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Abstract

PhD Thesis

by Emanuele Bevacqua

Many extreme geophysical impacts result from compound events (CEs), i.e. from the

joint occurrence of underlying contributing events. Here, a conceptual model is de-

veloped, which allows for assessing the CE hazard in present day and future climate.

The model is implemented via pair-copula constructions and includes physical predic-

tors which (i) provides insight into the processes underlying CEs, as well as into the

temporal variability of CEs, and (ii) allows for statistical downscaling of CEs. Based

on this model, (1) compound flooding (CF), that happens along low-lying coastal areas

when a storm surge obstructs the precipitation runoff into the sea, and (2) soil moisture

drought are studied.

(1) The results show that, in the present, the European locations experiencing the highest

CF probability are mostly located along the Mediterranean Sea. In the future (RCP8.5

scenario), the CF probability will increase over Northern Europe, mostly due to an in-

tensification of precipitation extremes. It is highlighted that local CF risk assessment

should consider the dependence between CF drivers to avoid potential risk underesti-

mation. In the future, CF should be considered as a potential hazard aggravating the

risk caused by mean sea level rise in several European regions.

(2) Soil moisture drought is studied as a CE of precipitation and potential evapotranspi-

ration (PET) in Europe during summer. Precipitation is found to be the main driver of

soil moisture drought. In dry climates, where evapotranspiration (ET) is moisture lim-

ited in summer, PET does not improve the estimation of soil moisture. Thus, drought

indices including PET should be interpreted carefully, within the context of the climate

in which they are applied.

Also, based on this conceptual model, long compound hot and dry conditions in Eu-

rope are studied, and multi-site daily precipitation on Austrian river catchments are

statistically downscaled. Thus, the model could be used for studying other CE types.



Zusammenfassung

Doktorarbeit

vorgelegt von Emanuele Bevacqua

Viele Naturkatastrophen resultieren aus compound events (CEs), d.h. aus gemein-

sam auftretenden Gefährdungsereignissen. Es wird deshalb ein konzeptionelles Modell

entwickelt, das die Beurteilung der CE-Gefahr ermöglicht. Das Modell ist via pair-

copula constructions entwickelt und beinhaltet physische Prädiktoren, die (i) Einblicke

in die Prozesse und in die zeitliche Variabilität der CEs liefern, und (ii) eine statistis-

che Herunterskalierung der CEs ermöglichen. Basierend auf diesem Modell werden (1)

Überflutungen (compound flooding, CF), die sich entlang der Küstengebiete ereignen,

wenn eine Sturmflut den Niederschlagsfluss ins Meer verhindert und (2) Bodentrocken-

heit untersucht.

(1) Im ersten Fall wird gezeigt, dass in Europa die höchsten CF-Wahrscheinlichkeiten

überwiegend entlang der Mittelmeerküsten auftreten. In der Zukunft (RCP8.5 Szenario)

wird die CF-Wahrscheinlichkeit, vor allem aufgrund einer Intensivierung der Nieder-

schläge, in Nordeuropa zunehmen. Um eine mögliche Unterschätzung des Risikos zu

vermeiden, sollte eine lokale CF-Risikobewertung die Abhängigkeit zwischen den CF-

Treibern berücksichtigen. In Zukunft sollte CF als potentielle Gefahr betrachtet werden,

da sie das Risiko eines mittleren Meeresspiegelanstiegs verschärft.

(2) Im zweiten Fall wird die Bodentrockenheit als CE von Niederschlägen und poten-

tieller Evapotranspiration (PET) in Europa im Sommer untersucht. Es ergibt sich,

dass Niederschläge der Haupttreiber für Bodentrockenheit sind. In trockenen Klima-

zonen, in denen die Evapotranspiration (ET) im Sommer begrenzt ist, verbessert PET

zur Abschätzung der Bodenfeuchte nicht. Eine sorgfältige Interpretation von Trocken-

heitsindizes einschließlich PET im Kontext des jeweiligen Klimas ist notwendig.

Auf der Grundlage dieses konzeptionellen Modells wurden lange, heiße und trockene Be-

dingungen untersucht und tägliche Niederschläge statistisch herunterskaliert. In weiterer

Folge könnte das Modell für das Studium anderer CE-Typen verwendet werden.
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1. Introduction

”Although there may be no immediate cause for alarm about the conse-

quences of carbon dioxide increase in the atmosphere, there is certainly need

for further study. We need to have a better assessment of where the carbon

dioxide goes after it has been dispersed from our chimneys [...] The develop-

ment of increasingly sophisticated numerical simulation of the global climate

seems the only possible approach in spite of the effort involved”139

- John Stanley Sawyer, Nature (1972)

The evidence of anthropogenic climate change continues to strengthen153, and the as-

sociated changes in extreme weather and climate events threat the society. To reduce

the impacts arising from climate change, societies can adapt to the changing risk and/or

mitigate greenhouse gas emission causing anthropogenic climate change. The planning

of adaptation and mitigation measures is mostly based on model projections of the

future climate. However, climate models are numerical representations of our current

knowledge of the climate system, and model simulations are affected by uncertainties

which are partially irreducible because driven by the chaotic behaviour of the climate

system. But another part of the uncertainties is driven by climate model errors, which

can be reduced through a better understanding of the climate system. Thus, such a bet-

ter understanding would contribute providing more credible future climate projections,

with unevaluable benefit to society. The climate community has done much effort to

increase our knowledge of the climate system, however, many challenges still need to be

addressed. One of these challenges is the understanding of many of the extreme impacts

that are driven by multiple events.

On the 6th of February 2015, a low-pressure system that developed over the north of

Spain moved across the Island of Corsica into Italy. The low pressure itself (Figure 1.1)

and the associated southeasterly winds drove a storm surge along the northern Adriatic

coast, especially in Ravenna (Italy). There, alongside the storm surge, large amounts of

precipitation fell in the surrounding area causing high values of discharge in small rivers

3
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Figure 1.1: Atmospheric conditions during a compound flooding (CF) in
Ravenna. Sea level pressure and total precipitation on 6th February 2015, when the
coastal area of Ravenna (indicated by the yellow dot) was hit by a CF.

near the coast. These river discharges were partially obstructed from draining into the

sea by the storm surge, which then contributed to major flooding along the coast. Such

a compound flood (CF) is a typical example of a compound event (CE). CEs result from

a combination of multiple events (represented by the contributing variables), which in

isolation might not be extreme themselves, but when occurring simultaneously or in

rapid succession have an extreme impact199 (i.e. the CE impact). Likewise, the tempo-

ral persistence of known extreme events can strongly exacerbate the induced impacts.

Understanding CEs is a complex undertaking84, as it requires the understanding of mul-

tiple phenomena, and how these interact to drive the extreme CE impact. In addition to

(1) CF, other examples of CEs are: (2) soil moisture drought, which can have a negative

impact on agriculture, and it is driven both by scarcity of precipitation and by the evapo-

transpiration; (3) persistent concurrent meteorological drought and heatwave conditions,

whose combination can increase the likelihood of wildfires, threaten vegetation health,

e.g., prompting tree mortality, and negatively affect the global economy46,103,150,207,214.

Despite many extreme geophysical impacts are caused by CEs, and the associated major

economic and human losses215, climatological studies have mostly focused on univariate

and individual, mostly short-term, events; such an approach may lead to an underes-

timation of the risk associated with extreme events. Furthermore, when the impact is

addressed as compound, the dependencies among the contributing variables often are

not taken explicitly, or not taken at all, into account during the risk assessments, which

may lead to serious risk underestimation19,20,214. Studies have only started focussing

on CEs, as underlined by the Intergovernmental Panel on Climate Change (IPCC), and

more research addressing this class of events is required147. For understanding the risk

associated with CEs in present and future climate, some questions are critical: (1) Which

4
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are the contributing variables (and the associated physical drivers) defining CEs? (2)

How is the CE risk assessment influenced by the dependence of the CE contributing

variables? (3) Both for present and future climate, which are the locations most prone

to a given CE impact? Furthermore, as climate models are crucial tools for understand-

ing how CEs will change in the future, the following questions are relevant: (4) How

do existing models represent the CE contributing variables and the associated physical

drivers? (5) How are these CE physical drivers expected to change in the future? Thus,

(6) what is the probability of CEs to occur in future climate and what are the associated

uncertainties?

This thesis aims to advance the research by developing the first conceptual model for

CEs, implemented via multivariate statistical methods, that allows for answering the

mentioned questions for a given CE type. Based on this model, we study CF and soil

moisture drought. This thesis thereby addresses some of the key challenges identified in

the World Climate Research Programme (WCRP) Grand Challenges on Weather and

Climate Extremes, which highlighted the relevance of CEs to climate science207.

Multivariate statistical modelling of CEs offers many advantages, however no statisti-

cal models have been developed for CEs, and here we aim to close this research gap.

Statistical modelling of CE can be employed for (1) downscaling of CEs, which is re-

quired to extend the CEs risk assessment to the past or future climate, where climate

models either do not simulate realistic values of the local variables driving the extreme

events or do not simulate them at all. In general, downscaling of CE is possible both

via dynamical models and with a combination of dynamical and statistical models; but

employing statistical models often is a valid and computationally less expensive alterna-

tive to dynamical models. Furthermore, statistical and dynamical modelling of CEs are

exchangeable only to some extent, indeed statistical models are useful for (2) validating

the output of the dynamical models themselves70, e.g. for validating the covariabity

of the contributing variables of CEs20. Also, multivariate statistical modelling of CEs

allows for: (3) understanding the physical drivers of CEs and of their changes through,

e.g., conditional sensitivity analysis19,20,93,94. (4) Extrapolating statistical estimates of

extreme events, e.g. return periods, where purely empirical estimates are likely biased

due to the rarity of the extreme events; statistical modelling also allows for (5) obtaining

uncertainty ranges around such estimates.

However, due to the complex dependence structure between the CE contributing vari-

ables, advanced statistical models are necessary to statistically model the multivari-

ate probability density function (pdf) of the CE variables. In this thesis, we employ

Pair-copula constructions (PCCs). These have been recently introduced in climate sci-

ence70,86,125 and are a very promising tool for modelling CEs. Modelling CEs employing

5
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a standard multivariate Gaussian distribution would not provide satisfactory results.

The Gaussian distribution would assume that the dependencies between all the vari-

able pairs are of the same type and without any dependence of the extreme events, and

that all of the marginal distributions are Gaussian. To solve the latter problems, the

use of copulas has been introduced in geophysics and climate science135,141, and it is

now widely used when studying CEs198,214. However, multivariate parametric copulas

lack flexibility when modelling systems with high dimensionality, where heterogeneous

dependencies exist among the different pairs1. This lack of flexibility of copulas would

be a limitation for many types of CEs. Thus, here we use PCCs, which decompose

the dependence structure into bivariate copulas and give greater flexibility in modelling

generic high-dimensional systems compared to multivariate parametric copulas1,2,15,67.

In this context, the objectives of this thesis can be divided into four parts.

• Conceptual model development. Develop a conceptual model for CEs in two

versions. A non-conditional version, which allows for resampling the observed CE

characteristics, and get robust risk estimates, including risk uncertainties. A con-

ditional version, which allows - in addition - for simulating the CE impact given

predictors, e.g., large-scale meteorological processes that provide insight both into

the past and future temporal variability of CEs and in the involved physical mech-

anisms. As described below, the model will be employed for studying CEs, thus

the model performances will be extensively assessed. In particular, to implement

the model, we will use PCCs and test their efficiency for modelling CEs. The

conceptual model has been presented in Bevacqua et al. 19 , and the routines to

sample from conditional pdfs decomposed via PCCs were published within the

CDVineCopulaConditional R-package18.

Based on the developed model, we will study:

• CF in Ravenna (Italy). Driven by the event of the 6th of February 2015, we

study CF in Ravenna. To explicitly quantify the flooding probability, we define

the CF impact, i.e. the water level driven by sea and river levels. We use meteoro-

logical predictors to extend the analysis to the past, and get a more robust hazard

assessment. We quantify the CF return periods including uncertainty estimates,

and the effect of the dependence between the contributing variables on the final

return period estimate. This part of the work is presented in Bevacqua et al. 19 .

• Present and future CF probability along the European coast. Despite the

CF relevance, a comprehensive CF assessment beyond individual locations at the

country scale is missing. Furthermore, extreme precipitation123, river flooding65,
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and extreme sea levels57,64,195 are expected to increase under future climate change.

Therefore it is likely that also the CF probability will increase along with these

driving processes. However, future CF probabilities, taking into account future

changes of precipitation, storm surges, waves, and astronomical tides, have not

been assessed yet. In Bevacqua et al. 20 , based on climate model simulations,

we estimate the CF probability along the European coast both in the present

and in future climate under the business-as-usual (RCP8.5) scenario. Our study

identifies regions potentially facing CF, and detect the physical drivers leading to

future changes in the CF hazard. Furthermore, here the conceptual model is also

used to evaluate how climate models represent the CF drivers.

• The contribution of potential evapotranspiration (PET) and precipi-

tation to soil moisture drought in Europe. Soil moisture observations are

sparse, and an explicit representation of soil moisture via physically based land

surface models is difficult. Thus, drought indices incorporating precipitation and

temperature through PET are often employed as proxies of soil moisture35,187.

However, the question remains whether such indices can provide an adequate rep-

resentation of soil moisture drought58. Understanding the contribution of PET

and precipitation to soil moisture in different climates can help in the interpreta-

tion of soil moisture future changes as depicted by drought indices. In Manning

et al. 93 , we have analysed soil moisture drought in wet, transitional and dry cli-

mates in Europe during summer as a CE of precipitation and PET. We assessed

the individual roles of these two variables (integrated on multiple timescales) and

that of their dependence structure to the estimation of soil moisture.

Furthermore, this conceptual model has been employed for multivariate statistical down-

scaling of the precipitation field in Switanek et al. 166 . Also, the framework has been

used for studying persistent concurrent drought and heatwave conditions over Europe

in Manning et al. 94 . These two works will be only briefly discussed in the conclusions

of the thesis (chapter 7).

How to read the thesis. In chapter 2, I provide a general description of CEs in the

context of the climate system, including a review of the typical modelling approaches

used for CF and soil moisture drought. In chapter 3, I present the conceptual model

and the main statistical methods that will be used in the thesis; this part is important

to understand the next chapters, where the conceptual model will be employed. The

studies of CF in Ravenna, CF along the European coast, and soil moisture drought in

Europe are presented in chapters 4, 5, and 6, respectively. These three chapters are

independent of each other, and each of them includes a final discussion and conclusions.
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The conclusions of the thesis, including a summary of the results, and an outlook on

possible future research will be given in chapter 7. In the text, sometimes, the reader

will be directed to the appendices for more technical details.
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2. Modelling of compound events

In this chapter, I give a brief overview of the modelling approaches used in climate

science in the context of climate change. Then, I introduce compound events (CEs),

focussing on the description of compound flooding and soil moisture drought, and on

how these two CEs have been modelled in the literature so far. The last section of

the chapter provides a discussion of advantages and limitations of statistical modelling

of CEs. Part of the content of this chapter can be found in Bevacqua et al.19,20 and

Manning et al. 93 .

2.1 A changing climate

Climate is usually defined as the ”average weather”, or more rigorously, as the statistical

description in terms of the mean and variability of relevant quantities over a period of

time ranging from months to thousands or millions of years 32. The classical period is

30 years, as defined by the World Meteorological Organization (WMO)32.

Climate changes both because of natural and anthropogenic reasons95. In general, cli-

mate variations may result from internal interactions between the components of the

climate system, such as the interaction between atmosphere and ocean in the tropical

Pacific that leads to the Niño-Southern Oscillation (ENSO) (Fig. 2.1c). Furthermore,

climate can vary because of external forcings such as volcanic eruptions and changes in

solar irradiation. In addition to these naturally-driven external forcings, the last century

has seen anomalous greenhouse gas (GHG) emissions that has led to an average global

warming128. The accepted evidence of the current climate change is based on multiple

indicators, such as increasing surface temperature (Fig. 2.1a), which in turn leads to

ice melting (Fig. 2.1b), and increasing precipitation extremes44, sea level57,64,195, and

upper-ocean heat content153. Both models and theory agree on attributing much of

global warming to anthropogenic GHG emission: the current average global tempera-

ture would have been substantially lower without anthropogenic GHG emission (Fig.

2.2).
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2 Modelling of compound events

Figure 2.1: Physical evidence of climate change. (a) Global annual mean surface
temperature anomaly. (b) Arctic summer sea-ice extent. (c) Annual mean Southern
Oscillation (El Niño/Southern Oscillation) Index derived from surface pressure mea-
surements at Tahiti and Darwin. Reprinted and adapted from Shepherd 153 .

Climate change is one of the major threats to humanity of the 21st century. With-

out adaptation to or mitigation of climate change, human and economic losses will be

intolerable by society. For example, without adaptation to sea level rise, 0.2-4.6 % (de-

pending on the future GHG emissions) of the global population is expected to be flooded

annually in 2100, therefore, although very expensive, adaptation will be widespread to

overcome damages which would otherwise be intolerable64. To contribute addressing the

climate change challenge, the IPCC was set up in 1988 by the World Meteorological Or-

ganization (WMO) and United Nations Environment Programme (UNEP). The IPCC

provides policymakers with reports of the current scientific knowledge about climate

change and its impacts, and with options for adaptation and mitigation.

To assess the climate change impacts, models are employed to obtain projections of

the future climate. Such projections are climate predictions conditional on plausible

scenarios of future GHG concentration trends. The IPCC Fifth Assessment Report has

adopted four scenarios, namely the Representative Concentration Pathways RCP2.6,

RCP4.5, RCP6, and RCP8.5, whose definition is based on the concept of radiative

forcing. The radiative forcing is ”the rate of energy change per unit area (W/m2) of the

globe as measured at the top of the atmosphere”131, and it is used as a measure of the

influence that GHG concentration has in altering the balance of incoming and outgoing

energy in the Earth-atmosphere system.

The RCP scenarios prescribe a range of plausible future radiative forcings (Fig. 2.3).

For example, the RCP8.5 corresponds to a radiative forcing increase of 8.5 W/m2 in
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Figure 2.2: Historical global mean surface temperature anomalies. Anomalies
relative to the period 1901 to 1950, as observed (black line) and as obtained from
simulations with both (a) anthropogenic and (b) natural forcings. (a) The thick
red curve shows the multi-model ensemble mean and the thin yellow curves show the
individual simulations. Vertical grey lines indicate the timing of major volcanic events.
(b) As in (a), except that the simulated global mean temperature anomalies are for
natural forcings only. The thick blue curve shows the multi-model ensemble mean
and the thin lighter blue curves show individual simulations. Reprinted from Randall
et al. 128 .

2100 relative to pre-industrial conditions in 1750 (Fig. 2.3b)169. This scenario assumes

that GHG emissions will continue increasing until the end of the century (Fig. 2.3a),

and atmospheric CO2 concentrations will more than triple by 2100 relative to 1750.

In 2011 the radiative forcing was already about 2.29 ([1.13-3.33]) W/m2 larger than in

1750 (ref.164). In chapter 5, we use the RCP8.5 when estimating future changes in the

probability of potential compound flooding in Europe.

2.2 Climate models, downscaling, and impact models

While considerations about certain climate phenomena can be deduced by purely the-

oretical arguments, climate simulations are relevant both to get a confirmation of the
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Figure 2.3: Representative Concentration Pathways (RCPs). (a) Annual total
CO2 emissions in Gigatons of Carbon (GtC) associated with the four RCPs (CO2 is
not the only greenhouse gas, however its emission is the main driver of anthropogenic
global warming). The corrsponding radiative forcing is in (b). For example, the RCP2.6
could be reached only through aggressive greenhouse gas reduction. Negative emissions
implies that special technologies would be used to remove CO2 from the atmosphere.
Image adapted from Van Vuuren et al. 184 .

underlined assumptions and to get a more in-depth understanding of the phenomena

themselves. For example, the current intensification of precipitation extremes under

global warming is based on a simple physical relation from Clausius-Clapeyron, stated

between 1834 and 1850 from the two scientists giving the name to the relation. Then,

around 1960-1980, changes in precipitation extremes have been projected for the fu-

ture based on climate model simulations44, i.e., models have confirmed the theoretical

expectation. Furthermore, high-resolution climate models are still employed to better

understand complex physical mechanisms behind the amplification of precipitation ex-

tremes, such as the super Clausius-Clapeyron precipitation scaling83, and cloud-cloud

interactions111. Thus, climate models are a fundamental tool for better understanding

the climate system.

Climate models are especially important to obtain projections of the future climate.

Observations of geophysical variables, such as temperature, precipitation, and river dis-

charge, are suitable for monitoring the current state of the climate. However, obser-

vations are often too short in time and too sparse in space to assess the current risk

associated with extreme events. Furthermore, the climate is changing, and thus cli-

mate model simulations, although affected both by biases and uncertainties98,153, are

necessary to provide stakeholders interested in the local climate with future climate

projections.

As GCMs have a coarse resolution, they do not explicitly resolve the regional scale to-

pography and physical processes leading to many extreme events, such as precipitation

extremes. Therefore, downscaling attempts to bridge the gap between the GCM coarse

resolution, and the smaller scale required for assessing local impacts98. Downscaling

is based on the assumption that the GCM represents well the large-scale atmospheric

12



2.3 Compound events

circulation driving the local variable of interest. Two major downscaling approaches

exist. Dynamical downscaling, where the output of the GCM is used to drive a higher

resolution, dynamical, regional climate model (RCM), to derive the local weather in

greater detail. Statistical downsclaing, where a statistical relationship is established be-

tween large-scale conditions (such as the sea level pressure and wind fields) and the local

meteorological variable of interest (such as precipitation); the statistical relationship is

then applied to the GCM output to derive the local variable of interest.

To quantify climate-related impacts, such as storm surges, an additional model, which

here is referred to as impact-model, is required. In fact, many impacts of interest are

not simulated by GCMs or RCMs, as it is the case, e.g., for storm surges. In other

cases, the impact of interest may not be realistically simulated by GCMs or RCMs.

For instance, standard GCMs do not simulate realistic runoff47,102,172 and soil moisture

(if it is simulated), such that additional hydrological modelling is required to estimate

the flooding and soil moisture drought, respectively. The additional impact-model can

be driven by GCM or downscaled GCM products, and can be of different nature, e.g.,

statistical or hydrodynamical.

2.3 Compound events

CEs are multivariate extreme events in which the individual contributing events (repre-

sented by contributing variables) may not be extreme themselves, but their joint occur-

rence causes an extreme (CE) impact 19,84,93,215. The CE impact may be an hydrological

variable such as a gauge level for compound floods, or other relevant variables such as

fatalities or economic losses. CEs have received little attention so far, as underlined in

the report of the Intergovernmental Panel on Climate Change on extreme events147.

CEs are responsible for a very broad class of impacts on society. For example, heatwaves

amplified by the lack of soil moisture, which reduces the latent cooling, may be classified

as CEs45,143. The impact of drought cannot be fully described by a single variable107,156:

analyses have been carried out which consider drought severity, duration156, maximum

deficit133, as well as the affected area149. Another example of CE includes fluvial floods

resulting from extreme rainfall occurring on a wet catchment120,215. In this thesis, we

will focus on compound flooding and soil moisture drought, which will be discussed more

in detail in the next sections.

Modelling CE impacts is more difficult than modelling impacts driven by a single vari-

able. Modelling an impact driven by a single variable is complex as a chain of several

models may be required (e.g., modelling a storm surge may require to employ: a GCM,
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an RCM, and a storm surge model). But modelling CEs is more difficult as it requires

to consider several variables (e.g., the compound flooding level is estimated based on the

storm surge, the river discharge, and the interaction of these two components). There-

fore, CE modelling can be computationally very expensive. Furthermore, modelling CE

impacts might require - with respect to modelling single-variable driven impacts - a fur-

ther step for evaluating (and eventually selecting) the climate models used to assess the

CE impact. In fact, climate models need to be evaluated before being used for impact

assessments. But while the limitations of climate models in representing single variables

have been widely investigated, it is not clear how well climate models can capture the

multivariate nature of many CEs30,43.

2.3.1 Compound flooding (CF)

Compound flooding (CF) is an extreme event taking place in low-lying coastal areas as a

result of co-occurring high sea level and large amounts of runoff, caused by precipitation.

The impact from the two hazards occurring individually can be significantly lower than

the result of their interaction19,84,147,198. Prominent examples of CF from Europe, the

area analysed in this thesis, are the Thames flood in London, 1928; the flash flood in Lis-

bon177, 1967; the Avon flood in Bristol, 2014; and the Ravenna flood19 in 2015. In 2012,

the Netherlands almost experienced a flooding of the water board Noorderzijlvest, which

led to precautionary evacuation60,182. The recently released pan-European (though not

fully comprehensive) HANZE database118 lists 24 co-occurrences of storm surges and

river floods along the Irish, UK, Belgian and Polish coasts, the French Atlantic and

Mediterranean coast, and the Italian Adriatic coast.

Co-occurring storm surge and heavy precipitation are driven by deep low-pressure sys-

tems198. Whereas precipitation extremes alone can be caused by convection without

intense cyclonic activity124, the latter is a precondition for extreme surges (Fig. 2.4).

Intense cyclones drive storm surges through strong winds pushing water towards the

coast, and the barometric pressure effect19,165. CF can be caused by several mecha-

nisms198. (1) A storm surge can block or slow down the precipitation drainage into

the sea19, causing flooding along the coast182,198. Runoff from a river may require a

certain time to drain into the sea such that precipitation may have to occur well before

the storm surge. Similarly, (2) flood levels of a storm surge may be amplified by any

significant amount of precipitation198. Finally, (3) a flood may occur when precipitation

falls on wet soil that is saturated by a preceding storm surge. The relative importance

of these mechanisms in a particular location depends both on the local climate and

topography198.
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Figure 2.4: Synoptic weather conditions driving extreme events on coastal
locations. Composite maps of sea level pressure (hPa, in white) and total column
water fields computed over days where extreme events (> 99.5th percentile) occurred
in Plymouth (UK, top) and Ancona (Italy, bottom) indicated by the red dots (based
on ERA-Interim data, 1980-2014). Here, the astronomical tide component of the sea
level is not considered to focus only on the meteorological driven part. Extreme events
type: (a,d) compound flooding (CF), (b,e) storm surge but not extreme precipitation,
(c,f) extreme precipitation but not storm surge. The total number of extreme events
considered for computing the composite maps is shown at the bottom-left corner of the
panels. Storm surges include the wave setup contribution195.

2.3.1.1 Modelling CF

A complete CF assessment requires the quantification of the water level of the flooding.

Despite CF may happen following the three different mechanisms listed above20,198, so

far studies that have quantified the CF water level have focussed on CF in estuarine

regions only (the first mechanism of the list). In these studies, the CF water level

is measured through a river gauge which is influenced both by the sea level and the

river discharge upstream. Furthermore, several studies have analysed the potential CF

probability (along the UK165, Australia210, and US198 coasts), based on the probabil-

ity of co-occurring precipitation and sea level extremes. The limitation to these two

approaches only is explained by (i) the novelty of the CF topic, and by (ii) the avail-

ability of only sparse data of the CF water level. The latter makes the modelling of CF

challenging, as observations are necessary to calibrate and/or validate models. Indeed,

we19 and other recent literature119 have suggested to increase the number of water level
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gauges in locations facing CF risk. Therefore, more research is still needed to understand

the dynamics of CF, e.g., to understand how relevant is the third CF mechanism listed

above.

Studies that have explicitly quantified the CF probability based on the CF water level

have focussed on specific locations, and have employed statistical modelling180,182,209.

However, no statistical models have been developed that can both account for the tem-

poral variability of the CF (based on the temporal variability of large-scale predictors)

and explicitly represent the dependence of the CF variables. Kumbier et al. 80 employed

hydrodynamic modelling to highlight, for a single flooding event, the contribution of the

storm surge to the total flooding water level.

Recently, Ikeuchi et al. 74 modified a global river routing model to handle both the

dynamically changing sea level and the river discharge, in river mouths. In some cases,

this modified model can add value to purely river discharge modelling. However, such

modelling approach focuses on the water level at mouths of large-scale rivers which

are mostly influenced by upstream river discharge, i.e. where the compound effect is

relatively small74. Nonetheless, in some locations, according to simulations from this

model, the compound effect is relevant.

Both statistical and dynamical CF modelling can contribute to the CF research, with

different targets. Potentially, hydrodynamic modelling is a great tool, but it is usually

computationally very expensive. As Ikeuchi et al. 74 states, ”statistical methods might

be more suitable for long-term projections than hydrodynamic modelling in terms of

computational loads”, although their dynamical approach may serve as a starting point

for improvements of CF modelling in large rivers74. Furthermore, information on the

channel bathymetric depths is often missing and this is an issue in river hydrodynamic

modelling because accurate bathymetric depth information is required for simulating the

river water levels74. When there is no information about the channel bathymetric depth,

statistical modelling might be helpful if a large enough sample of data is available for

the calibration of the statistical model. As observational data are limited in estuarine

regions, the exact dynamic of the interaction between river discharge, storm surge, and

waves during a CF has not been fully studied yet. Thus, hydrodynamic modelling is a

promising tool for improving the understanding of such interaction.

Sea level physical drivers and modelling The total sea water level is given by

the superposition of a slow-varying mean sea level, storm surges, wind-driven waves,

and astronomical tides26,104,195. Total sea level changes are driven by changes of these

components and of their interactions. Regional mean sea level rise is driven by several

components that cause departures from the global mean sea level rise (SLR). CMIP5
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models account only for changes in water density called steric changes, i.e. thermosteric

(temperature driven) and halosteric (salinity driven) density changes. These changes

are associated with (1) ocean circulation changes due to local variations in salinity

and temperature, and (2) water thermal expansion or contraction3,21. The melting

of continental glaciers and polar ices sheets is an additional relevant source of global

SLR3,195; such melting is not considered by CMIP5 models, and therefore it is modelled

separately64. Changes in the geoid associated with the post-glacial isostatic adjustment

rebound cause variations of (1) the relative sea level (which has a direct effect on coastal

sea level impacts), and the ocean floor height (causing changes in sea level)26. Relatively

small local sea level changes are also driven by ocean circulation changes due to influx

of freshwater from polar ice sheets3. Furthermore, wind-driven surface wave changes

(caused by atmospheric long-term variability) contribute to interannual-to-multidecadal

water level variations104.

Wind-driven waves are also crucial for short-term extreme sea levels104,105,195; other

relevant drivers of short-term sea level extremes are storm surges (driven by wind and

local sea level pressure) and astronomical tides. Furthermore, non-linear interactions be-

tween the sea level components can locally affect the total water level and thus can drive

changes in sea level extremes. Surge-tide interactions can be important in shallow waters

with large tidal range17,71,211. Waves are important for storm surge generation because

they change the roughness of the ocean surface. The water depth modulates the bottom

friction and the water extent, and thus SLR can affect nearshore wave processes7,194,

storm surges8,38, and astronomical tide amplitudes7,8,195. However, predicting the effect

of SLR at continental scale remains a challenge, mostly because the SLR-driven shore-

line retreat and the change in nearshore bathymetry (which will modulate changes in

surges, tides, and waves) are very difficult to be predicted.

The main methods employed in this thesis are described in the next chapter, however,

here I briefly describe some general aspects of the models employed to simulate astro-

nomical tides, storm surges, and waves for the analysis of CF along the European coast

(chapter 5). Astronomical tides are simulated via the FES2012 model25,112,161, which is

a fully revised version of a model initiated in the early nineties82. The model employs

global hydrodynamic tidal solutions (Finite Element Solutions, FESs) of the hydrody-

namic equations of the tidal system (including ocean bathymetry); such solutions are

improved by assimilating long-term ocean altimetry data and tidal gauges82. In total,

32 tidal constituents are provided, and the model runs over a 1/16 degrees resolution

grid25. Storm surges are simulated via the DFLOW FM open source model195,197.

This model solves the Navier-Stokes equations for an incompressible fluid under the

shallow-water assumption73, taking into account atmospheric wind and pressure fields

as external drivers of the storm surge dynamics. Waves are simulated using the spectral
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wave model Wavewatch III (version 4.18) forced by the wind-field105,173. The model

decomposes the irregular wind-driven wave into wave modes; thus, the model solves the

balance equation for the wave spectrum. This spectrum gives information on the energy

associated with a wave having a fixed direction and frequency, for a fixed location and

time step. The balance equation describes the wave propagation, which is influenced

by several source terms. In deep water, the main source terms are the wind-wave inter-

action, the non-linear wave-wave interaction, and the ”white-capping” dissipation (see

footnote1). In shallow water, also other sources are relevant, most notably wave-bottom

interactions173.

2.3.2 Soil moisture droughts

Soil moisture plays a critical role in agriculture and the variability of temperature in Eu-

rope146,213. Many studies have highlighted the importance of incorporating temperature

in drought analysis6,145,171. Soil moisture drought refers to moisture deficits in the upper

layer of soil known as the root zone. Soil moisture in the root zone is primarily con-

trolled by antecedent precipitation while excesses in evapotranspiration (ET), related

to high temperatures, are required to explain the severity of a negative soil moisture

anomaly145,171. Potential evapotranspiration (PET) measures the evaporative demand

of the atmosphere and indicates the amount of ET that would occur given an unlim-

ited water supply. The contribution of PET to soil moisture drought depends on the

availability of moisture in the soil for ET to take place144. Under moisture-limited con-

ditions, values of PET and ET can diverge where ET may verge to zero while PET can

continue to rise with an increase in temperature144.

The individual roles of precipitation and PET, and that of their dependence driven

through land-atmosphere interactions, highlights the compound nature of soil moisture

drought. As the CE risk is influenced by the dependence between their drivers19,63,99,198,

understanding the dependence between hot and dry conditions and their impacts is of

great importance. For example, overlooking non-linear dependence between hot and dry

conditions and crop yields leads to an underestimation of risk in reduced crop yields213,

while the probability of hot and dry summers is underestimated when treating them

independently214. Underlining this importance are findings of an increase in the con-

currence of drought and heat wave events103.

1The ”white-capping” dissipation phenomenon is visible as white foam on the sea. It occurs when
the speed of the wave crest exceed the phase speed of the wave, causing the front face of the wave to
become too steep and ”break”.
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2.3.2.1 Modelling of soil moisture

Despite the importance of soil moisture drought, soil moisture observations are very

poor, in contrast to, e.g., temperature or precipitation observations116. Physically-based

land surface models and drought indices are employed to estimate soil moisture both in

present and future climate. Here, I provide some information on these two modelling

approaches; this information is important to put the results of chapter 6 in context.

Representing soil moisture explicitly via physically-based land surface models is a com-

plex task, particularly because the lack of homogeneous and long soil moisture data

renders difficult the model calibration and validation. Different type of soil moisture

models have been developed151, which can be helpful to compensate for the lack of

observations, but only in terms of soil moisture changes over time116. Simple mod-

els are based on the water balance equation (e.g., refs.89,116,171). These models often

need to be calibrated to account, e.g., for different soil types, rendering the model per-

formances uncertain under climate change conditions116, where there are uncertainties

about changes in the soil characteristics. The most sophisticated models depend also on

information about vegetation, and there is relevant disagreement among available soil

moisture model outputs116.

Drought indices incorporating precipitation and temperature through PET are often

employed as proxies of soil moisture35,187, to analyse both present and future climate.

For example, through the inclusion of temperature through PET in indices such as the

Standardised Precipitation Evapotranspiration Index (SPEI)188, the Palmer Drought

Severity Index117, and the Reconnaissance Drought Index (RDI)178, studies have anal-

ysed how drought conditions may change in a warming climate at regional and global

scales33–35,152,160,174,175,189,206. Based on indices incorporating PET, soil moisture drought

events are expected to become more severe in a warming climate174,189,206. However,

the meaning of this increase in severity can be quite unclear due to the differing contri-

bution of PET to soil moisture drought in different climate conditions144. In fact, in dry

conditions, PET can have little contribution to the soil moisture89 and lead to drying

biases in drought indices assumed to represent soil moisture142,152.

Describing soil moisture with drought indices requires one to account for antecedent

meteorological conditions that soil moisture holds the memory of. This is done using

integrations of a climatic water balance (defined as precipitation-PET ) varying in length

from 1 to 24 months (e.g., SPEI), or through the use of recursive models (e.g., PDSI).

The selection of this integration length for indices such as the SPEI is important; a length

that is too short will not capture drought persistence while longer periods can include

redundant information174. Studies using the SPEI or RDI to represent soil moisture
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generally use integration periods between 3 and 6 months66,174. The PDSI is calculated

with monthly integrations and it can hold the memory of the previous winter and spring

in summer months35.

The incorporation of a climatic water balance in the drought indices implies that PET

influences soil moisture over the same timescale as precipitation. Drying, however, occurs

on a daily timescale where excesses in ET can be driven by days of extreme temperature

that are filtered out through the use of longer integration periods. Such a feature of

long integrations of the climatic water balance can lead to an inability to capture both

future changes in drying that may cause droughts to set in quicker in a warmer climate

and the occurrence of flash droughts associated with short periods of warm temperature

and rapidly decreasing soil moisture108.

Employing drought indices is much easier than using complex explicitly physically-based

approaches. However, the question remains whether such indices can provide an ade-

quate representation of soil moisture drought, or whether more explicitly physically-

based approaches are required58. We contribute to answering this question in chapter

6, where we assess how the variables employed in common drought indices, namely

precipitation and PET, actually contribute to soil moisture.

2.4 Advantages and limitations of statistical modelling of

compound events

In this thesis, we develop a conceptual model, implemented via statistical methods,

which allows for studying CEs. In the recent literature, more attention has been given

to the study of CEs through multivariate statistical methods147. Conventional univariate

statistical analysis cannot give accurate information regarding the multivariate nature of

these events. In principle, combining univariate analyses for studying CEs is appropriate

only in the few cases where no dependencies exist between the CE drivers.

Statistical modelling of CEs is useful for several reasons, although - depending on the

problem at hand - it can be more or less efficient than dynamical modelling. (1) Statis-

tical modelling can be employed for downscaling the drivers and/or the impact of CEs,

which is crucial for risk assessment. For downscaling, the main advantage of statisti-

cal models is that they often offer a valid and computationally cheaper alternative to

dynamical models. However, also the effort required for building the statistical model

should be considered, as statistical models often need to be specifically built for the

problem under consideration. Also, a long enough data sample is necessary for the cali-

bration of a statistical model. And even if the data sample is long, the model might not
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work in a future climate98. In fact, the empirical relationships represented by the sta-

tistical model may not be valid in a potentially very different future climate. Therefore,

when employing statistical downscaling for the future, the statistical model should be

able to capture the physical processes that will be influenced by future climate change.

Validating the statistical model for the past based on cross-validation might be helpful,

however, this validation will likely not be sufficient if the climate characteristics of inter-

est will substantially change in the future. Therefore, based on physical understanding,

the user should ensure that the statistical model can properly represent changes in the

future climate98.

Employing dynamical modelling for downscaling has advantages and limitations as well.

For instance, dynamical models usually allow for obtaining a variable of interest easily

on a continuous spatial domain. For example, in chapter 5, using storm surge and wave

data derived from a hydrodynamic models, allows us to study CF along the complete

European coast. But while some dynamical models may in principle be very accurate,

they may require input data that may be not available, e.g., the channel bathymetric

depths for hydrodynamical river level modelling74, as discussed in section 2.3.1.1 . As

for statistical models, limited observations can be an issue also for dynamical models,

e.g., limited observations make difficult the model validation.

However, statistical and dynamical modelling of CE are exchangeable only to some ex-

tent. Statistical models are useful for: (2) validating the output of the dynamical models

themselves70, e.g., for validating the co-variability of the CE contributing variables20;

(3) extrapolating return periods of extreme events, where purely empirical estimates are

likely biased due to the rarity of the extreme events (as we do, e.g., when studying the

CF potential in Europe in chapter 5). Furthermore, (4) uncertainty estimates can be

easily obtained via statistical modelling; in general, as observed data are often limited,

uncertainties might be substantial and should thus be quantified19,148.

Furthermore, multivariate statistical modelling of CEs allows for (5) understanding

the physical drivers of CEs and their changes via, e.g., conditional sensitivity analy-

sis19,20,93,106. To this end, depending on the target, both or either statistical and dy-

namical models can perform well. For example, to quantify the sensitivity of convective

precipitation extremes to changes in sea surface temperature (SST), it is likely that dy-

namical modelling offers better performances. Indeed, in this case, explicitly represent-

ing small-scale physical phenomena should provide better results. Instead, calibrating

a statistical model would require long data, and a statistical model would anyway not

guarantee to capture the relevant physical processes for the sensitivity study, especially if

the target of the study would be to extrapolate the sensitivity of precipitation far beyond

the observed SST. In other cases, as some studied in this thesis, e.g., when analysing
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the influence of precipitation, PET, and of their dependence to soil moisture, it is much

easier to implement a statistical model which enables great flexibility to analyse many

possible features.
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In this chapter, I present the conceptual model that was developed and employed in

this thesis for studying compound events (CEs). Then, I introduce the main statistical

methods used in the thesis, i.e. copulas and pair-copula constructions. Part of the

content of this chapter can be found in Bevacqua et al.19,20.

3.1 Conceptual conditional model for compound events

Leonard et al. 84 define a CE as ”an extreme impact that depends on multiple statis-

tically dependent variables or events”. This definition stresses the extremeness of the

CE impact rather than that of the individual contributing variables, which may not be

extreme themselves, and the importance of the dependence between these contributing

variables (see footnote1). The physical reasons for the dependence among the contribut-

ing variables can be different. There can be a mutual reinforcement of one variable

by the other and vice versa due to system feedbacks, e.g., the mutual enhancement of

droughts and heat waves in transitional regions between dry and wet climates147. Or the

probability of occurrence of the contributing variables can be influenced from a large-

scale weather condition, as it has occurred in Ravenna (Fig. 1.1), where the low-pressure

system caused coinciding extremes of river runoff and sea level. It is clear then, that the

dependence among the contributing variables represents a fundamental aspect of CEs,

and so this dependence must be properly modelled to represent these extreme events

well.

Our statistical conditional model consists of: the contributing variables Yi, the impact

h, and the predictors Xj of the contributing variables; the model represents the re-

lationships between these three components. The contributing variables Yi and their

multivariate dependence structure directly drive the CE impact. For instance, in case

1According to a recent and more general definition215, uncorrelated events or variables contributing
to extreme impacts, e.g. co-occurring high astronomical tide and storm surge contributing to extreme
sea level, are also classified as CEs. However, the dependence is a relevant driver of most of CEs and it
makes CE modelling particularly challenging.
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of compound floods (CFs), the contributing variables are the runoff and the sea level.

The impact h of a CE can be formalized via an impact-function h = h(Y1, ..., Yn). For

example, in the case of CF in Ravenna (chapter 4), we define the river gauge level as

the CE impact, but in principle it can be any measurable variable such as agricultural

yield or economic loss. The predictors Xj provide insight into the physical processes un-

derlying CEs, including the temporal variability of CEs, and can be used to statistically

downscale CEs when the variables Y and the impact h are available for calibrating the

model97.

The downscaling feature is particularly useful for CEs, which are not realistically sim-

ulated or may not even be simulated at all by available climate models. For instance,

standard global and regional climate models do not simulate realistic runoff47,102,172,

and do not simulate sea surges. Here, our model can be used to downscale these con-

tributing variables, e.g., from simulated large-scale meteorological predictors from past

or future climate. In particular, the model provides a simultaneous, i.e. multivariate,

downscaling of the contributing variables Yi, which allows for a realistic representation

both of the dependencies between the Yi, and of their marginal distributions. This is

relevant because a separate downscaling of the contributing variables Yi may lead to un-

realistic representations of the dependencies between the Yi, which in turn would cause

a poor estimation of the impact h. The downscaling feature can be useful to extend the

hazard probability or risk analysis into the past, where observations of the predictors,

but not of the contributing variables and impacts are available.

More specifically, the conceptual conditional model consists of:

1. An impact function to quantify the impact h:

h = h(Y1, ..., Yn). (3.1)

2. Predictors X for the contributing variables Y .

3. A conditional joint probability density function (pdf) f~Y | ~X(~Y | ~X) of the contribut-

ing variables Y , given the predictors X (which we describe through a parametric

model, via pair-copula constructions). In particular, both the contributing vari-

ables Y and predictors X are time dependent, i.e. ~Y = ~Y (t) and ~X = ~X(t).

A particular type of the model is obtained when the predictors are not considered in

the joint pdf, i.e., when considering f~Y (~Y ). This unconditional model does not allow

for changes of the contributing variables Y and of the impact due to variations of the

predictors X. We use these two model types in chapter 4 for studying CF in Ravenna19.
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In general, formalizing the impact h of a CE as in step 1 - to then asses the probability

or risk of CE based on values of h - corresponds to the Structural Approach 138,148,193,

which has recently been formalized by Salvadori et al. 137 . Here, the advantage of the

general model we propose is that it allows for taking into account variations of the

impact h driven by temporal changes of the predictors X. Through the conditional pdf,

the model allows for a realistic representation both of the dependencies between the Yi,

and of their marginal distributions.

A generalization of the model is schematically represented in Fig. 3.1 where, as explained

in the following, only some of the represented components are necessary to build different

possible model versions. When the variables Y are available (for model calibration)

but not the impact h, the model can be used to only estimate the variables Y given

the predictors X. This may be useful when assessing the potential CE hazard through,

e.g., multivariate return periods of the contributing variables Y 6,53,54,133,136,137,155,156,198.

Moreover, it may happen that the impact h is available, but the variables Y are not.

In this case, the model may still be used in the form fh| ~X(h| ~X) to directly estimate the

impact h, based on the conditional joint pdf of the impact h, given the predictors X. In

this case, depending on the physical system, it may be more or less complicated to define

the predictors. Also, we observe that eq. (3.1) is general and a possibility for estimating

the impact would be to use the conditional joint pdf fh|~Y (h|~Y ). Such an approach may

be useful for cases where complex relations exist between the impact h and the variables

Y , and therefore it may be difficult to implement, e.g., a proper regression model to

describe the impact h. We use this version of the model in chapter 6 for studying soil

moisture drought (the impact h) as a CE of precipitation and PET (the contributing

variables Y )93. Finally, also an impact h caused by only one contributing variable Y

driven by several predictors ( ~X) can be considered as a CE impact215; our model can

be easily employed to study this type of CEs as well.

3.2 Statistical methods

Modelling CEs is a complex undertaking84, and due to the complex dependence struc-

ture between the contributing variables, advanced multivariate statistical models are

necessary to model CEs: here, to implement the conceptual model we use copula-

based methods1,19. For example, modelling the multivariate probability distribution

of the contributing variables with multivariate Gaussian distributions would usually

not produce satisfactory results. A multivariate Gaussian distribution would assume

that the dependencies between all the pairs are of the same type (homogeneity of the

pair-dependencies), and without any dependence of the extreme events, also called tail
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Figure 3.1: Conceptual model. Schematic representation of the developed conceptual
model (see text).

dependence. Furthermore, a multivariate Gaussian distribution would assume that all

of the marginal distributions would be Gaussian. To solve the latter problems, the use

of copulas has been introduced in geophysics and climate science135,141. Through copu-

las, it is possible to model the dependence structure of variables separately from their

marginal distributions. However, multivariate parametric copulas lack flexibility when

modelling systems with dimension greater than two, where heterogeneous dependencies

exist among the different pairs1. Therefore, this lack of flexibility of copulas would be

a limitation when modelling CEs involving more than two variables, or when introduc-

ing predictors into the system. Pair-copula constructions (PCCs), proposed by Joe 75 ,

decompose the dependence structure into bivariate copulas and give greater flexibil-

ity in modelling generic high-dimensional systems compared to multivariate parametric

copulas1,2,15,67.

An advantage of using a parametric statistical model is that this constrains the depen-

dencies between the contributing variables, as well as their marginal distributions6,70,133

148,149,155,156. The parametric structure reduces the uncertainties of the statistical prop-

erties estimated from the data, compared to empirical estimates70. However, such a

reduction of the uncertainties actually depends on the choice of a proper parametric

model, in particular when modelling the tail of a univariate or multivariate distribution.
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3.2.1 Copulas

Consider a vector ~Y = (Y1, ..., Yn) of random variables, with marginal pdfs f1(y1), ..., fn(yn),

and cumulative marginal distribution functions (CDFs) F1(y1), ..., Fn(yn), defined on

R∪ {−∞,∞}. We use the recurring definition ui := Fi(yi), where the name u indicates

that these variables are uniformly distributed by construction. According to Sklar’s

theorem157 the joint CDF F (y1, ..., yn), can be written as:

F (y1, ..., yn) = C(u1, ..., un) (3.2)

where C is an n-dimensional Copula114. C is a copula if C : [0, 1]n → [0, 1] is a

joint CDF of an n-dimensional random vector on the unit cube [0, 1]n with uniform

marginals49,76,134,135.

Under the assumption that the marginal distributions Fi are continuous, the copula C

is unique and the multivariate pdf can be decomposed as:

f(y1, ..., yn) = f1(y1) · ... · fn(yn) · c(u1, ..., un) (3.3)

where c is the copula density. Eq. (3.3) explicitly represents the decomposition of the

pdf as a product of the marginal distributions and the copula density, which describes

the dependence among the variables independently of their marginals. Eq. (3.3) has

some important practical consequences: it allows us to generate a large number of joint

pdfs. In fact, inserting any existing family for the marginal pdfs and copula density into

eq. (3.3), it is possible to construct a valid joint pdf, provided that suitable constraints

are satisfied. The group of the existing parametric families of multivariate distributions

(e.g., the multivariate normal distribution, which has normal marginals and copula) is

only a part of the realizations which are possible via eq. (3.3). Copulas, therefore, make

it easy to construct a wide range of multivariate parametric distributions.

3.2.2 Tail dependence

The dependence of extreme events cannot be measured by overall correlation coefficients

such as the Pearson, Spearman or Kendall. Given two random variables which are un-

correlated according to such overall dependence coefficients, there can be a significant

probability to get concurrent extremes of both variables; such probability is well rep-

resented by the tail dependence19,70,93. On the contrary, two random variables which

are correlated according to an overall dependence coefficient may not necessarily be tail

dependent.
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Mathematically, given two random variables Y1 and Y2 with marginal CDFs F1 and F2

respectively, they are upper tail dependent if the following limit exists and is non-zero:

λU (Y1, Y2) = lim
u→1

P (Y2 > F−12 (u)|Y1 > F−11 (u)) (3.4)

where P (A|B) indicates the generic conditional probability of occurrence of the event A

given the event B. Similarly, the two variables are lower tail dependent if the following

limit exists and is non-zero:

λL(Y1, Y2) = lim
u→0

P (Y2 < F−12 (u)|Y1 < F−11 (u)). (3.5)

3.2.3 Pair-Copula Constructions (PCCs)

While the number of bivariate copula families is very large76,114, building higher dimen-

sional copulas is generally recognised as a difficult problem1. As a consequence, the set

of copula families having a dimension greater than or equal to 3 is rather limited, and

they lack flexibility in modelling multivariate pdfs where heterogeneous dependencies

exist among different pairs. For instance, they usually prescribe that all the pairs have

the same type of dependence, e.g., they are either all tail dependent or all not tail depen-

dent. Under the assumption that the joint CDF is absolutely continuous, with strictly

increasing marginal CDFs, PCCs allow to mathematically decompose an n-dimensional

copula density into the product of n(n− 1)/2 bivariate copulas, some of which are con-

ditional. In practice, this provides high flexibility in building high-dimensional copulas.

PCCs allow for the independent selection of the pair-copulas among the large set of

families, providing higher flexibility in building high dimensional joint pdfs with respect

to using the existing multivariate parametric copulas1.

When the dimension of the pdf is large, there can be many possible, mathematically

equally valid decompositions of the copula density into a PCC. For example, for a

5-dimensional system there are 480 possible different decompositions. For this reason,

Bedford and Cooke 14,15 have introduced the regular vine, a graphical model which helps

to organize the possible decompositions. This is helpful to choose which PCC to use to

decompose the multivariate copula. In this thesis, we concentrate on the widely-used

subcategories canonical (also known as C-vine) and D-vine of regular vines. Out of the

480 possible decompositions for a 5-dimensional copula density, 240 are regular vines

(60 C-vines, 60 D-vines and 120 other types of vines)1. An example of a 5-dimensional
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D-vine decomposition follows:

f12345(y1, y2, y3, y4, y5) = f4(y4) · f5(y5) · f3(y3) · f1(y1) · f2(y2)

· c45(u4, u5) · c53(u5, u3) · c31(u3, u1) · c12(u1, u2)

· c43|5(u4|5, u3|5) · c51|3(u5|3, u1|3) · c32|1(u3|1, u2|1)

· c41|35(u4|53, u1|53) · c52|13(u5|31, u2|31)

· c42|135(u4|513, u2|513).

(3.6)

More details about vines are given in appendix A.3.1, where also the graphical repre-

sentation of the vine in eq. (3.6) is shown in Fig. A.1a. Details about the statistical

inference of the joint pdf (including the selection procedure of vines) can be found in

appendix A.4.

As described in section 3.1, the conditional model is based on a conditional joint pdf,

e.g., f~Y | ~X(~Y | ~X), which is decomposed via PCC. Information on conditional joint pdfs

decomposed through vines, and on how to sample from such vines, are given in the next

section.

3.2.3.1 Sampling and conditional sampling from vines

To simulate a vector ~Y = (Y1, ..., Yn) of random variables, with marginal CDFs

F1(y1), ..., Fn(yn), whose joint pdf is modelled via a copula, we first simulate from the

copula the uniform variables Ui for i = 1, ..., n (ui := Fi(yi)), and then transform them

into Yi for i = 1, ..., n (via yi := F−1i (ui)).

The simulation of the uniform variables from vines is discussed in refs.13,14,81. Aas et al. 1

show the algorithms to sample uniform variables from C- and D-vines. Due to the nature

of PCCs, the sampling procedure works as a cascade. Once the first variable is simulated

from a uniform distribution, each following variable is simulated as conditioned on the

previous group of simulated variables.

It is clear then, that to sample from the conditional distribution of UNcond+1, ..., Un given

values for U1, ..., UNcond
(i.e. from fUNcond+1,...,Un|U1,...,UNcond

), it is possible to follow

this procedure by simply fixing the first Ncond variables at the conditioning values.

The approach used here to execute such a procedure, is to select vines from which the

conditioning variables would be sampled as first when following the sampling algorithms

from Aas et al. 1 . For example, using the D-vine represented in Fig. A.1a of appendix

A (eq. (3.6)), we could simulate by fixing the pairs (U4, U5) or (U2, U1) in case we are

interested in conditioning the simulation on two variables.
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Following this approach, for D-vines the number of n-dimensional decompositions which

allow for conditioning on Ncond variables is Ncond! · (n−Ncond)!. For C-vines the number

of the decompositions which allow for such a conditioning is Ncond! · (n − Ncond)!/2

for n − Ncond > 1, and Ncond! for n − Ncond = 1. For example, in the case of CF in

Ravenna (chapter 4), we model a 5-dimensional system with two conditioning variables

(the meteorological predictors), that is n = 5 and Ncond = 2. Considering that there are

not 5-dimensional vines which belong to both the C-vine and D-vine categories1, the

choice of the vine used for the model is done among (2!/2 · (5− 2)!) + (2! · (5− 2)!) = 18

vines. As we need to condition on values (y4, y5), we simulate from the copula through

conditioning on (u4 = F4(y4), u5 = F5(y5)), where F4 and F5 are the fitted marginals in

the calibration period, while (y4, y5) could in principle be any value.

To apply such a sampling procedure, I developed the Algorithms 1 and 2 (appendix A.2),

which are a modified version of Algorithms 1 and 2 shown in Aas et al. 1 . As a part of

the PhD, these algorithms were made publicly available via the R-package CDVineCop-

ulaConditional 18. Further information about the R-package and the algorithms can be

found in appendix A.2.

3.3 Multivariate return periods

In chapter 5, the CF hazard along the European coast is analysed20. Data of the local

impact of the CF, i.e. the water level driven both by precipitation and sea level, would

only be available for a very few locations along the coast. Therefore, we assess the hazard

probability via return periods of potential CF, i.e. a combination of precipitation and

sea level values that is considered dangerous (in this study, co-occurring precipitation

and sea level extremes). In this study, we employ precipitation and sea level data from

dynamical models, without requiring statistical downscaling of these quantities.

This approach corresponds to apply an extremely simplified version of the conceptual

model of section 3.1, where the predictors and the impact are not included in the model,

and the contributing variables are defined as the sea level (S) and the precipitation (P ).

Alternatively, such an approach can also be seen as applying the same model as before,

but including the impact as the binary variable:

h =

1, if (s, p) is dangerous

0, otherwise
(3.7)

where dangerous (s, p) are potential CF; then, the return period of h = 1 is defined as

the return period of potential CF. In this context, the advantage of using the conceptual
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model is the application of a parametric bivariate pdf on the pairs (S, P ) (this pdf is

required for computing the return period). Indeed, the parametric distribution allows for

obtaining a more robust estimation of large return periods, compared to those obtained

via an empirical estimation.

In general, the return period is defined as the average waiting time between dangerous

events, i.e. events belonging to a dangerous region. The choice of the dangerous region

should be based on expert knowledge of the impact behaviour. In the 1-dimensional

case, the dangerous region is naturally defined as that of extreme values, e.g., values

exceeding a fixed threshold. In the 2-dimensional case, the definition of extreme events

is not straightforward and several different definitions are possible for the dangerous

region. Thus, several possible return period definitions exist, each of them associated

with a different definition of the dangerous region. Among the most common return

periods, there are the AND and the OR54,138,185. In the context of CF, these are

defined as: AND, the average waiting time between events where both sea level and

precipitation are extreme; OR, the average waiting time between events where either

sea level or precipitation is extreme.

When studying CF along the European coast (chapter 5), we choose to employ AND

return periods as the most extreme CF tends to happen for co-occurring extremes.

Specifically, we define the bivariate CF return periods54,138,185 as the average waiting

time between events where sea level and precipitation simultaneously exceed the indi-

vidual 1-year return levels (i.e. the ∼ 99.7th percentiles s99.7 and p99.7).

To define this AND return period, the probability of co-occurring sea level and precip-

itation extremes is needed. To allow for a robust estimation, we apply a parametric

copula-based bivariate probability distribution. Applying a parametric model for the

full range of sea level and precipitation values, one would run the risk of biasing the rep-

resentation of the extreme tail by the bulk of the bivariate distribution where most data

occur. Therefore we apply the model only to pairs of high values. We select pairs where,

simultaneously, sea level and precipitation values exceed the individual 95th percentiles

(ssel and psel, respectively) (see footnote2). In a very few locations, one might end up

with selecting few pairs only. Here we reduce the selection threshold 0.95 to ensure that

at least 20 pairs of values are selected (never below 0.9). Clusters of selected event pairs

2The pairs of high values where to fit the pdf can actually be defined in different ways. For example,
Wahl et al. 198 employed annual maxima for the fit of the pdf. Specifically, their choice leads to two
cases: in case I the pairs are defined searching for the annual precipitation maxima and taking the
associated sea level values, and vice versa in case II. As a consequence, this lead to two different AND
return periods. With respect to the method employed by Wahl et al. 198 , our method allows for (1)
defining a unique AND return period, and (2) allows for fitting the pdf on a relatively large number of
pairs, which should lead to high confidence in the estimated parameter of the pdf.
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separated by less than three days are replaced by a unique event which assumes the

maximum sea level S and precipitation P observed in the cluster (see Fig. 3.2).

Thus, the bivariate return period is:

T (s99.7, p99.7) =
µ

P ((s > s99.7 and p > p99.7) | (s > ssel and p > psel))
=

=
µ

1− uS99.7 − uP99.7 + CSP (uS99.7, uP99.7)

(3.8)

where µ is the average time elapsing between the selected pairs, uS99.7 = FS(s99.7),

FS is the marginal cumulative distribution of the excesses over the selection threshold

(accordingly for precipitation), and CSP is the copula modelling the dependence between

the selected pairs.
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Figure 3.2: Procedure for computing compound flood (CF) bivariate (AND)
return periods. Scatterplot of ERA-Interim simulated pairs (s, p) of sea level and
precipitation accumulated within ±1 days (black points) in Venice (here, sea level is
given by the daily maxima of the surge and wave time series superposition; see section
5.2). The 1-year return levels (∼ 99.7th percentiles) of sea level (s99.7) and precipitation
(p99.7) are the thresholds selected for computing the CF return period. The parametric
extreme value probability density function (pdf) (red contour lines) is fitted only to
pairs in DFIT , i.e. pairs whose individual components are simultaneously larger than
the individual 95th percentiles of sea level (s95) and precipitation (p95). In particular,
the extreme value pdf was fitted to the red pairs (s, p); the red pairs are different from
the original simulated black pairs belonging to DFIT , as the latter were pre-processed
when they were separated by less than three days (see section 5.2).The extreme value
pdf is obtained via copula theory as fSP (s, p) = fS(s) · fP (p) · cSP (us, up), where fi
are the marginal distributions of sea and precipitation values in DFIT , and cSP is the
copula modelling the dependence between sea level and precipitation in DFIT . Here,
cSP is a Gumbel copula (θ = 1.4), associated with a Kendall correlation equal to 0.29,
and an upper tail dependence equal to 0.36.
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modelling of CF in Ravenna

(Italy)

In this chapter, based on the conceptual model presented in chapter 3, we study com-

pound flooding (CF) in Ravenna (Italy). Here, we explicitly quantify the flooding water

level as a function of sea and river levels, thus we estimate the CF return periods and

the associated uncertainties. The content of this chapter was published as a part of

Bevacqua et al. 19 .

4.1 Introduction

We focus on the Ravenna case study because of the extreme event that happened on the

6th of February 2015, as presented in the introduction. On the day prior to the event,

values of up to approximately 80 mm of rain were recorded in the surrounding area of

Ravenna, and around 90 mm on the day of the event itself. The sea level recorded was

the highest observed in the last 18 years9. The high risk of flooding to population in the

Ravenna region has been underlined by the LIFE PRIMES project5, recently financed

by the European Commission, whose target is ”to reduce the damages caused to the

territory and population by events such as floods and storm surges”4 in Ravenna and

its surrounding areas. As pointed out by Masina et al. 101 , natural and anthropogenic

subsidences represent a threat for the coastal area of Ravenna, characterized by land

elevation which is in many places below 2 m above mean sea level48. The sea level

inundation hazard along the coast of Ravenna has been recently studied by Masina

et al. 101 , who considered the joint effect of sea water level and significant wave height.

A schematic representation of the catchment on which we focus is shown in the black

rectangle of Fig. 4.1. The Y variables, river and sea levels, represent the contributing
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Figure 4.1: Representation of the hydraulic system of the Ravenna catch-
ment. The area affected by CF is marked by the red point. The impact is the water
level h, which is influenced by the contributing variables Y , i.e. sea and river levels.
The variables inside the black rectangle are used to develop the 3-dimensional (un-
conditional) model. The X are the meteorological predictors driving the contributing
variables Y , which are incorporated into the 5-dimensional (conditional) model.

variables, and the water level h is the impact of the CF. The X variables are meteoro-

logical predictors of the contributing variables Y , which will be discussed in more detail

later.

Based on the conceptual model presented in chapter 3, here we assess the CF probability

in Ravenna. Here, we explicitly define the impact of CF as a function of sea and river

levels in order to quantify the flood probability and its related uncertainties. Moreover,

we quantify the CF probability underestimation that occurs when the dependence among

sea and river levels is not considered. We identify the meteorological predictors driving

the river and sea levels. By incorporating such predictors into the statistical model, we

extend the analysis of CF into the past, where data are available for predictors, but not

for the river and sea level stations. Our research objectives are the following:

1. Implement and test the conceptual model (chapter 3) which allows for representing

the dependencies between the contributing variables of the CF.

2. Explicitly define the impact of CF as a function of the contributing variables. This

allows us to estimate the CF probability and the related uncertainty.

3. Identify the meteorological predictors for the contributing variables Y . Incorpo-

rate the meteorological predictors in the model to gain insight into the physical

mechanisms driving the CF and into their temporal variability.

4. Extend the analysis into the past (where data are available for the predictors, but

not for the contributing variables Y ).
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4.2 Data

The data used here for the contributing variables Y and the impact h are water levels at a

daily resolution (daily averages of hourly measurements). We use data for the extended

winter season (November-March) of the period 2009-2015. Data sources are the Ital-

ian National Institute for Environmental Protection and Research (ISPRA) for the sea

(www.mareografico.it), and Arpae Emilia-Romagna for rivers and impact. River data

were processed in order to mask periods of low quality, i.e. those suspected to be influ-

enced by human activities such as the use of a dam. Moreover, we applied a procedure to

homogenise the data of the rivers; details are given in appendix A.1. We do not filter out

the astronomical tide component of the sea level, considering that the range of variation

of the daily average of sea level is about 1 meter, while that of the astronomical tide is

about 9 cm. To check the above, we used astronomical tide obtained through FES2012,

which is a software produced by Noveltis, Legos and CLS Space Oceanography Division

and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/). Me-

teorological predictors were obtained from the ECMWF ERA-Interim reanalysis dataset

(covering the period 1979-2015, with 0.75 × 0.75 degrees of resolution37). Specifically,

for the river predictors, we use daily data (sum of 12-hourly values) of total precipita-

tion, evaporation, snowmelt and snowfall, while for the sea level predictor we use daily

data (average of 6-hourly values) of sea level pressure. Further information on the data

sources can be found in the Data availability section of Bevacqua et al. 19 .

4.3 Model development

The extreme impact of compound events (CEs) may be driven from the joint occurrence

of non-extreme contributing variables84,147. This is the case for CF in Ravenna, where

not all extreme values of the impact would be considered if selecting only extreme values

of the contributing variables. Therefore we model the contributing variables, without

focusing only on their extreme values. Below we show the steps we follow to study CF

in Ravenna, based on the conceptual model described in section 3.1. We will go through

these steps in detail in the next sections.

1. Define the impact function:

h = h(Y1Sea , Y2River , Y3River). (4.1)

The contributing variables Y (sea and river levels) and the impact are shown in

the black rectangle of Fig. 4.1).
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2. Find the meteorological predictors of the contributing variables Y . For each vari-

able Yi we found more than one meteorological predictor, which we aggregated

into a single variable Xi. We refer to this variable as the predictor Xi of the vari-

able Yi from now on. Moreover we use the same predictor for the two river levels

because they are driven by a similar meteorological influence. The predictors are

graphically shown in Fig. 4.1, where we introduce X1Sea (the predictor of Y1Sea)

and X23Rivers (the predictor of Y2River and Y3River).

3. Fit the 5-dimensional conditional joint pdf f~Y | ~X(Y1Sea , Y2River , Y3River |X1Sea , X23Rivers)

of the conditional model (modelled via PCC). To develop the unconditional model,

we fit the 3-dimensional pdf f~Y (Y1Sea , Y2River , Y3River), which includes only the con-

tributing variables Y inside the black rectangle of Fig. 4.1. The time series of

the contributing variables have significant serial correlations, and this should be

considered in order to avoid underestimating the CF probability uncertainties (see

appendix A.6 and Fig. A.3 there). Only for the unconditional model, we explic-

itly modelled such serial correlations through combining PCCs with autoregressive

AR(1) models (see appendix A.6).

4. Given the complexity of the problem, an analytical derivation of the statistical

proprieties of the impact is impracticable. Therefore, we apply a Monte Carlo

procedure. Specifically we simulate the contributing variables Y from the fitted

models, and then we define the simulated values of h via eq. (4.1) as:

hsim := h(Y sim
1Sea

, Y sim
2River

, Y sim
3River

) (4.2)

where ~Y sim are the simulated values of ~Y .

5. Perform a statistical analysis of the values hsim. To asses the probability associated

with the events, we compute the return levels of h through fitting a Generalized

Extreme Value (GEV) distribution to annual maximum values (defined over the

period November-March). We quantify the model uncertainties (i.e. uncertainties

associated with model parameters and structure), which is straightforward through

such models. Practically, such uncertainties propagate through to the hazard

assessment, and so they must be considered (details about model based return

level uncertainty are given in appendix A.5).

To neglect the Monte Carlo uncertainties, i.e., the sampling uncertainties due to the

model simulations, we produce long simulations. For example, to obtain the model based

return level curve, we simulate a time series hsim(t) of length equal to 200 times the length

of the observed data (6 years). From this, we get a time series of 1200 annual maximum

values, to whom we fit the GEV distribution to get the return level. Observation-based
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return levels are obtained through fitting a GEV to annual maximum values of hobs. The

relative uncertainties are computed through propagating the parameter uncertainties of

the fitted GEV distribution (more details are given at the end of appendix A.5).

4.3.1 Impact function

The water level h is influenced by river (Y2River and Y3River ) and sea (Y1Sea ) levels (Fig.

4.1). We describe this influence through the following multiple regression model:

h = a1Y1Sea + a21Y2River + a22Y
2
2River

+ a31Y3River + a32Y
2
3River

+ c+ ηh(0, σh) (4.3)

where ηh(0, σh) is a Gaussian distributed noise having standard deviation equal to σh.

The contribution of the rivers to the impact h is expressed via quadratic polynomials,

which guarantees a better fit of the model according to the Akaike Information Criterion

(AIC). In particular, we defined the regression model as the best output of both a forward

and a backward selection procedure, considering linear and quadratic terms for all of

the Y as candidate variables. The Q-Q plot of the model, i.e. the plot of the quantiles

of observed values against those of the mean predicted values from the model, is shown

in Fig. 4.2. The points are located along the line y = x, which indicates that the model

is satisfactory. Omitting one of the variables as predictor reduces model performance,

underlining the compound nature of the impact h. The sum of the relative contributions

of the rivers is very similar to that of the sea. The parameters of this model (and of

those in section 4.3.2) were estimated according to the maximum likelihood approach,

solved through QR decomposition (via the lm function of the R package stats 170).

4.3.2 Meteorological Predictor Selection

Fig. 4.3 shows the resulting scatter plots of observed predictands (Y obs) and selected

observed predictors (Xobs). To fit the joint pdf of the conditional model, we use all time

steps where data for all of the X and Y variables have been recorded. However, we

calibrate the predictors of rivers and sea separately, so we use all available data for each

Y variable (during the period November-March). The procedure we use to identify the

meteorological predictors is shown below.

4.3.2.1 River levels

The meteorological influence on the two rivers Y2River and Y3River is very similar: their

catchments are small and close by (as a consequence the Spearman correlation between
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Figure 4.2: Impact-model validation based on Q-Q plot. Q-Q plot between the
observed impact (X-axis) and the modelled impact (Y-axis) from the regression model
(eq. (4.3)).

the rivers is high, i.e. 0.79). In particular, the distance between the two rivers is

typically smaller than the grid-resolution of the predictor fields. Therefore we use the

same predictor for the two river levels.

The river levels are influenced by the total input of water over the catchments, which

is given by the positive contribution of liquid precipitation and snow melt, and by

evaporation which results in a reduction of the river runoff. Specifically, we compute

the input of water w on the day t∗ over the river catchments (one grid point) as:

w(t∗) = Ptotal(t
∗)− E(t∗) + Smelt(t

∗)− Sfall(t∗) (4.4)

where Ptotal is the total precipitation, E is the evaporation, Smelt is the snow melt and

Sfall is the snow fall. The snow fall accounts for the fraction of precipitation which does

not immediately contribute to the input of water over the catchments because of its solid

state. While a fraction of the water input over the catchment rapidly reaches the rivers

as surface runoff, another fraction infiltrates the ground and contributes only later to

the river discharge. Compared with the first fraction, the second has a slower response

to precipitation and changes more gradually over time. This double effect underlines the

compound nature of river runoff whose response to precipitation falling at given time is

higher if in the previous period additional precipitation fell in the river catchment. To
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Figure 4.3: Scatter plots of predictands Y obs and predictors Xobs. The num-
bers are Spearman coefficient correlations. The red lines (computed via LOWESS, i.e.
Locally Weighted Scatterplot Smoothing) is shown to better visualize the relationship
between pairs170.

consider both of these effects we define the river predictor as:

X23Rivers(t) = aR

t∑
t∗=t−1

w(t∗) + bR

t∑
t∗=t−10

w(t∗) + cR (4.5)

where cR is a constant. We choose the parameters of eq. (4.5) through fitting the right

hand side of this equation to the river contributions to the impact, i.e. Y23Rivers :=

a21Y2River + a22Y
2
2River

+ a31Y3River + a32Y
2
3River

(see eq. (4.3)). The lags n = 1 and

n = 10 days are those which maximise respectively the upper tail dependence and

the Spearman correlation between Y23Rivers(t) and the cumulated w over the previous

n days, i.e.,
∑t

t∗=t−nw(t∗). Here, we use the upper tail dependence to get the typical

river response time to the fraction of water which directly flows into the rivers as surface

runoff. Similarly, the Spearman correlation is used to get the typical time required for

the infiltrated water in the ground to flow into the rivers.

By defining the river predictor as in eq. (4.5), we aggregate the different meteorological

drivers of the rivers in the single predictor X23Rivers(t). Such aggregation allows for a sim-

plification of the system describing the CF, due to a reduction of the involved variables.

Furthermore this reduces the variables described by the joint pdf f~Y , ~X(~Y , ~X), whose

numerical implementation errors can potentially increase with higher dimensionality67.

All of the terms involved in the multiple regression model (eq. (4.5)) are statistically

significant at level α = 2 · 10−16. Moreover, the quality of the river predictor X23Rivers
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improves (according to the likelihood and to Spearman correlation between X23Rivers

and Y23Rivers) when we use all of the terms in eq. (4.4), instead of only Ptotal(t
∗). The

presence of more terms in eq. (4.4) does not increase the number of model parameters.

4.3.2.2 Sea level

Sea level can be modelled as the superposition of the barometric pressure effect, i.e., the

pressure exerted by the atmospheric weight on the water, the wind-induced surge, and

an overall annual cycle. As for the river predictor, we aggregate the different physical

contributions in a single predictor. We define the sea level predictor on day t as:

X1Sea(t) = aS SLPRavenna(t) + bS ~SLP (t) · ~RMAP + cS sin(ω1Yeart+ φ) + dS (4.6)

where SLPRavenna is the sea level pressure in Ravenna, ~SLP · ~RMAP is the wind contri-

bution due to the sea level pressure field SLP , the harmonic term is the annual cycle

and dS is a constant term. In eq. (4.6), the SLP field and the regression map are rep-

resented as column vectors. We choose the parameters of eq. (4.6) through regressing

the sea level Y1Sea(t) on the right hand side of this equation. A more detailed physical

interpretation of the terms is given in the following.

1. aSSLPRavenna accounts for the barometric pressure effect181. The regression map

~RMAP indicates which anomalies of the SLP field are associated with high values

of the residual of the barometric pressure effect (see Fig. 4.4, where also more

details are given). Particularly, according to the geostrophic equation for wind,

these pressure anomalies induce wind in the Adriatic Sea towards Ravenna’s coast.

Therefore, the projection of the SLP field onto this regression map, i.e, the term

~SLP (t) · ~RMAP, describes the wind-induced change in sea level at time t.

2. cS sin(ω1Yeart+ φ) describes the remaining annual cycle of the sea level which is

not described by barometric pressure effect and wind contribution. This harmonic

term could be driven by the annual hydrological cycle179, i.e., due to cyclic runoff of

rivers which flow into the Adriatic sea, or due to density variations of the sea water

(caused by the annual cycle of water temperatures). The astronomical tide may

explain a minor fraction of this term. The range of variation of cS sin(ω1Yeart+φ)

is about 10% of that of the sea level. When we use the predictor to extend the

analysis to the period 1979-2015 this term will be kept constant assuming that

the annual cycle has not drastically changed in past years. Moreover, we will not

consider long-term sea level rise because its influence on both sea and impact h

level variations is negligible over the considered period (the observed rate of sea
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Figure 4.4: Regression map employed to develop the sea level predictor. The
regression map ~RMAP is used in eq. (4.6). The value of the regression map in the
location (i, j) is given by RMAP(i, j) = var(R0)−1 · cov(R0, SLP i,j), where R0(t) is
the residual of the barometric pressure effect obtained from the fit of the linear model
a0 SLPRavenna(t)+d0 to Y1Sea(t). The Regression map is equivalent to a 1-dimensional
maximum covariance analysis203. The red dot indicates Ravenna.

level rise in the North Adriatic Sea has been ∼ 0.8mm/year 115). Also, the relative

sea level rise has been negligible over the considered period24.

All the terms involved in the multiple regression model are statistically significant at

level α = 2 · 10−16.

4.4 Results

The results of the unconditional and conditional models are presented in the following

sections. Details regarding the statistical inference of the joint pdfs (the selected pair-

copula constructions and fitted pair-copula families) can be found in appendices A.3.1

and A.4.

4.4.1 Unconditional (3-dimensional) model

The unconditional model reproduces the joint pdf of the contributing variables

(Y1Sea , Y2River , Y3River), and, in conjunction with the autoregressive models, also the serial

correlations. The model is used to simulate values of the impact h and assess the CF

return periods, with related uncertainties.

Fig. 4.5 shows, qualitatively, a good agreement between simulated and observed con-

tributing variables Y . In Fig. 4.6 we show the return levels of the impact h. There is
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Figure 4.5: Comparison of observed and simulated CF contributing variables.
Scatter plots of observed (grey) against simulated (black) contributing variables Y .
The simulated series are obtained via the 3-dimensional model (including the serial
correlation), and have same length as the observed.

good agreement between the model and observation based expected return levels, even

for return periods larger than six years (the length of the observed data). For return

periods larger than shown in Fig. 4.6, the agreement slowly decreases. The model

based expected return period of the highest CF observed (3.19 m) is 18 years (the 95%

confidence interval is [2.5,∞] years, where ∞ indicates a value larger than 1050 in this

context from now on). The reason for such large uncertainty in the return period is the

shortness of available data. However, the model based uncertainties are large but still

smaller, up to return periods of about 60 years, than those obtained when computing

the return level directly (based on the GEV) on the observed data of the impact (Fig.

4.6). Moreover, when considering a model which does not take the serial correlation

of the contributing variables Y into account, we get an underestimation of the return

period uncertainties. For example, the amplitude of the 95% confidence interval of the

20-years return level is underestimated by about 50% (not shown).

4.4.2 Conditional (5-dimensional) model

This model allows for assessing the change in the CF probability due to temporal varia-

tions of the meteorological predictors of the contributing variables Y . We calibrate the

model to the period 2009-2015. After validating the model for the period 2009-2015, we

use predictors of the period 1979-2015 to extend the analysis of CF probability to the

past. We assess the quality of the model by comparing predictions with observations.
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4.4 Results
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Figure 4.6: Return levels of compound flooding based on the unconditional
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Figure 4.7: Validation of the conditional model time series. The validation is
obtained through a 6-fold cross-validation. hobs is shown in red. The average and 95%
prediction interval of 104 simulated time series are respectively shown in black and grey.

Specifically, we look at its overall accuracy by considering the root-mean-square error

between model predictions and observed data. Moreover, we look at the accuracy of the

model when predicting extreme values of the impact h (defined as values of h larger than

the 95-percentile of hobs), using the Brier score (see appendix A.7). To assess the quality

of the model, avoiding overfitting, we perform a 6-fold cross-validation (see appendix

A.8).

The cross-validation time series of the impact h is visually compared with hobs in Fig.

4.7. The average of the simulated cross-validation time series in general follows the

temporal progression of hobs (Fig. 4.7), and about 94% of the observed impact values

lie within the 95% prediction interval. In particular, the highest flood observed is well

predicted and lies inside the prediction interval. The Brier score based on the cross-

validation time series is BSCV = 0.029, while that relative to the reference model, i.e.

the climatology (see appendix A.7), is BSCL = 0.046. The resulting Brier skill score is

BSS = 1−BSCV /BSCL = 0.38 , which indicates that the model is more accurate than

the reference model in predicting extreme values of the impact h. In general, the skill
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4 Multivariate statistical modelling of CF in Ravenna (Italy)

of the model, both in terms of root-mean-square error and Brier score, does not change

much when the cross-validation is not performed. This underlines that no artificial skill

is present in the model. These positive results provide good confidence for extending

the impact time series to the period 1979-2015. It also makes the model potentially

interesting for flood forecasting and warning.

In Fig. 4.8A we show the return levels of the impact h. As in the unconditional model,

return levels are stationary, i.e., estimated through fitting a stationary GEV distribu-

tion to annual maximum values. The discrepancy between model and observation based

return levels for the conditional model is smaller than for the unconditional, in partic-

ular for high return periods. It may happen that the dependencies between river and

sea levels are not considered in some analyses when assessing the flooding probability.

Kew et al. 77 show in Rotterdam, which is affected by floods driven both from surge

and river discharges, that the boundary conditions used to build the protection barrier

were determined assuming independence between sea level and river discharge. Here

we observe that ignoring such a dependence may result in an underestimation of the

estimated flooding probability. The expected return period of the highest CF observed

(3.19 m), computed over the period 2009-2015, is 20 years (the 95% confidence interval

is [4.9,∞] years). When not considering the dependencies between river and sea levels,

the expected return period of the highest CF observed increases to 32 years (the 95%

confidence interval is [6.7,∞] years). Fig. 4.8B shows that the return level estimates are

reduced by about 0.2 m when not considering such dependencies between sea and river

levels. In particular, at the 95% confidence level, the return levels are underestimated

when not considering these dependencies for return periods smaller than about 40 years.

The same, however, cannot be clearly concluded for return periods larger than 40 years

because of the large uncertainties (Fig. 4.8B). A similar result is obtained from the

unconditional model (not shown). Therefore, although there is not a large difference

in the return levels when treating sea and rivers independently or not, in Ravenna it

should be relevant to consider their dependencies for flood risk estimation. An imprecise

risk assessment may bring negative societal consequences due to inadequate information

provided for infrastructural adaptation.

To estimate the CF return periods based on predicted values of the impact during the

past, we run the simulations through conditioning on predictors of the period 1979-2015.

This allows us to get a more robust estimation of the CF probability compared to that

obtained considering only the period 2009-2015. The return levels in Fig. 4.8A (dashed

line), are similar to that estimated when analysing the period 2009-2015. Although

this result suggests a stationarity of the return levels during the period 1979-2015, we

investigate if there has been any trend in the CF return levels during the recent past. To

do this, we computed time-dependent return levels. Specifically, we computed stationary
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4.5 Discussion and conclusions

return levels on moving temporal windows of six years during the period 1979-2015, based

on hsim values obtained through conditioning on predictors belonging to these windows.

However, we did not observe any long-term trend in the CF return levels. Moreover,

analysing the return levels computed on moving temporal windows during the period

1979-2015, we did not observe any long-term trend neither in the return levels of storm

surge nor in that of river floods (not shown).

During the period 1979-2015, there has not been a long-term trend in the CF return levels

due to a variation of the marginal distributions of the predictors, or in their dependence.

To study this, we computed the return levels on moving temporal windows in the cases

described below. First, we simulated the impact through conditioning the Y sim variables

on predictors having the observed marginal distributions of the period 1979-2015, but

fixing the dependence to that observed during 2009-2015. Secondly, we simulated the

impact through conditioning on predictors having the observed dependence of the period

1979-2015, and fixed marginal distributions to the ones observed during 2009-2015. In

both cases, we did not find any long-term trend in the return levels (not shown).

4.5 Discussion and conclusions

Based on the conceptual model presented in section 3.1, we have studied compound

flooding (CF) in Ravenna. Here, the contributing variables of the CF are the river and

sea levels, whose combination drives the impact, i.e., the water level in between the river

and the sea.

We used a specific adaptation of the model to statistically downscale the river and sea

level from meteorological predictors, and therefore estimate the impact of the CF as a

function of the downscaled sea and river levels. The accuracy of the estimated impact

appears satisfactory, such that the model is potentially interesting for use in both flood

forecasting and warning. Also, the model based expected return levels of the impact are

about the same as those directly computed on observed data of the impact. Although

the model based uncertainty on these return levels is very large (due to the shortness

of the available data), for return periods smaller than about 60 years it is smaller than

that obtained computing the return periods directly on the observed data of the impact.

In general, uncertainties can often be substantial because data for model calibration are

often limited, thus uncertainties should be quantified to avoid drawing conclusions that

may be misleading.

We calibrate the model over the period 2009-2015, and by including meteorological

predictors obtained from the ECMWF ERA-Interim reanalysis dataset, we extend the
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4 Multivariate statistical modelling of CF in Ravenna (Italy)
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Figure 4.8: Return levels of compound flooding based on the conditional
model. A: return levels of the impact h with associated 95% uncertainty intervals.
The return level computed on hobs is shown in red (uncertainty shown in light red).
The model based return level computed for the period 2009-2015 (black) is based on
hsim values simulated for days where the observed data were available (uncertainty is
shown in grey). The model based return level computed for the period 1979-2015 (black
dashed) has uncertainty of similar amplitude to that of period 2009-2015 (not shown).
B: difference between model based return level obtained when considering the realistic
dependence between sea and river levels, and when assuming that they are independent.
To make the dependencies between the sea and the river levels independent but keep the
dependence between the two rivers, we shuffled the sea level data after each simulation,
that guarantees random association between sea data and each of the rivers182. The
black line represents the median of the bootstrap samples.

CF analysis to the full period of 1979-2015, to obtain a more robust estimation of the

return periods. The expected return period of the highest CF observed, computed

over the period 1979-2015, is 19 years (the 95% confidence interval is [3.7,∞] years).

Moreover, we did not observe any long-term trend in CF return levels during the period

1979-2015.

Ignoring the estimated dependence between sea and river levels may lead to an under-

estimation of the CF probability. Specifically, assuming independence between sea and

river levels, the expected return period of the highest CF observed - computed over the

period 2009-2015 - is 32 years (the 95% confidence interval is [6.7,∞] years). When as-

suming the estimated dependence between sea and river levels, it decreases to 20 years

(the 95% confidence interval is [4.9,∞] years). In other cities affected by sea surges

and river flooding, e.g., in Rotterdam, protection barriers were designed assuming in-

dependence between sea level and river discharge77, a decision which is still debated
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about77,78,180. In Ravenna, it should be relevant to consider these dependencies for

the flood risk estimation. An imprecise risk assessment may harm the population at

risk due to inadequate information provided for infrastructural adaptation. In general,

when considering generic CEs, their associated risk may be substantially influenced by

the dependence between the contributing variables, and so this dependence should be

considered.

In the context of CF, only a few studies have explicitly quantified the CF impact182,208,209,

probably because of practical difficulties in quantifying the impact. For example, to

quantify the impact of CF in the river mouth, it is necessary to have water level data at

a station where both the influence of sea and river are seen. However, we have found few

locations where these stations exist as, maybe in part, stakeholders are usually interested

in data where only the influence of the river or the sea is seen. Also, for places where

data show both the influence of sea and river, the measurements can be affected by

human influences such as pumping stations between river and sea stations. Therefore,

we argue that to obtain a more in-depth knowledge of these events, it may be very useful

to create an archive containing data for locations where CF have been recorded, and

eventually increase the effective number of measurements in places which are supposed

to be under risk of CF.
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5. Higher CF probability in

Europe under anthropogenic

climate change

In this chapter, based on the multivariate return periods described in section 3.3, we

estimate the probability of potential compound flooding (CF) along the European coasts

both under present and future climate conditions. The content of this chapter is part of

Bevacqua et al. 20 , which is currently under revision for publication.

5.1 Introduction

Several studies have demonstrated the importance and damaging nature of CF for se-

lected locations19,60,80,109,182. Comprehensive studies, however, exist only for the UK165,

Australia204,210 and the US coast198. The latter study detected an increasing probability

of CF during the past decades, although it was not possible to attribute this increase to

anthropogenic climate change. But given that extreme precipitation123, river flooding65,

and extreme sea levels57,64,195 are expected to increase under future climate change, it is

likely that also the CF probability will increase along with these driving processes. Fur-

thermore, coastal cities are expected to further grow in the coming decades57 and more

and more people will be exposed to CF, rendering an analysis of CF in the future urgent.

So far, only the effect of mean SLR on the changing CF hazard has been analysed, and

only for selected locations in the US109. The future CF probability, taking into account

future changes of precipitation, storm surges, waves, and astronomical tides, has not

been assessed yet.

Our study aims to close this research gap. We analyse the present and future CF

hazard along the European coasts. A precise CF hazard probability assessment can in

practice only be site-specific because the actual CF hazard depends strongly on local

conditions such as the shape of the coastline, the orography and land surface of the
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5 Higher CF probability in Europe under anthropogenic climate change

surrounding land area where precipitation is collected. Furthermore, the final CF risk

estimate depends also on the existing flood protection, and the exposed population

and assets. Modelling such local details would, however, preclude a continental-scale

analysis. Thus we limit ourselves to modelling the probability of potential CF : we follow

the approach of previous studies64,198 and model the probability of co-occurring extreme

sea levels and heavy precipitation. For the sake of brevity, however, we will write CF

probability only. At the end of the 21st century, SLR will be the primary threat for

coastal areas (appendix B, Fig. B.1), Societies are aware that they will need to adapt

to this impact of climate change by raising dikes, constructing new flood protection, or

abandoning coastal areas57,64. However, CF may pose an additional hazard that has

to be considered. Therefore, for the projections, we focus on the additional CF hazard

caused by the meteorological CF drivers, without considering mean SLR.

5.2 Data and Methods

To characterise extreme sea level, we consider daily maximum values of the superposition

of storm surges (including waves) and astronomical tides. In the following, we will

refer to these maxima simply as sea level. Storm surges and waves are simulated with

the hydrodynamic DFLOW FM195–197 and Wavewatch III105,195,196 models respectively,

driven with ERA-Interim reanalysis data37 for present climate (1979-2014), and with

six selected CMIP5 models168 for present (1970-2004) and future climate (2070-2099);

astronomical tides are simulated separately (see Methods for more details about the

sea level modelling). Precipitation is directly taken from the reanalysis and the climate

models. On each day, we consider accumulated precipitation within a time range of ±1

days, which allows us to account for the mentioned mechanisms responsible for CF (see

section 2.3.1), and precipitation occurring just before and after midnight of the storm

surge day99. We define univariate extremes of the individual hazards as events occurring

on average every 1 year for sea level and precipitation. (The results are qualitatively

similar when employing 200-days and 5-years as thresholds.) CF return periods are

defined as the average waiting time between the co-occurrence of these extreme events185

(appendix B, Fig. B.5). We model the dependence of sea level and precipitation extremes

by a copula-based multivariate probability model. For an evaluation of the simulated

CF probability see appendix B (Fig. B.2, B.3, and B.4). Further information about

data and methods follow.
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5.2.1 Data

Storm surges are simulated with the DFLOW FM model using a flexible mesh setup

(forced with 6-hourly wind and atmospheric pressure fields)112,195–197. Waves are sim-

ulated with the model Wavewatch III105,195,196 (forced with 6-hourly wind field). As-

tronomical tides are simulated every six hours using the FES2012 model25,112,161, which

makes use of satellite altimetry data. The resulting sea level data are available every ∼25

km along the coastline. Comprehensive validation and detailed information of the mod-

els can be found in refs.105,112,195–197 (general information on the models can be found

also at the end of section 2.3.1.1). Our analysis is based on quantile values, therefore we

do not bias correct simulated data. Sea level and precipitation data are based on ERA-

Interim and six selected models from the CMIP5 multi-model ensemble (appendix B,

Table B.1). Precipitation is taken from the grid point nearest to each coastal location.

CMIP5 models are selected based on the skill in representing the synoptic climatolo-

gies and inter-annual variations across the north-east Atlantic region105,122,195–197. The

GFDL-ESM2G model is not considered along the Black Sea coast because of instabil-

ities of the surge model. Choosing well performing CMIP5 models reduces the risk of

artefacts caused by the delta change approach96 (see below).

The effect of SLR on the astronomical tide is quantified through dynamic tidal ocean

simulations (using the DFLOW FM model). The simulations consider SLR scenarios

resulting from the combination of steric changes with three land-ice scenarios of wa-

ter contributions from ice sheets and glaciers64. The analysis is described in detail in

Vousdoukas et al. 195 with the only difference that we consider changes in the complete

time series, rather than in the daily maxima only. Since the sensitivity of the final tide

amplitude to the land-ice scenarios is very small195, we consider the median of the three

scenarios only. The actual observed time-lag between the surge and astronomical tide

sequences is random. The estimated CF return periods are thus just one random realisa-

tion of all possible time-lags between surges and astronomical tides. To get an estimate

of a more likely CF return period we compute the median of all possible estimates.

We observe that this procedure does not allow to take into account the variability of

the return periods due to the natural variability of the meteorological conditions. For

the ERA-Interim driven data, we obtain this estimate by calculating 240 individual

estimates based on the superposition of (i) the simulated surge time series (including

waves), and (ii) the randomly shifted tide time series. The part of the tide series be-

yond the length of the surge series was moved to the start date. From this ensemble

we compute the median of the CF return periods (Fig. 5.1). It turned out that the

difference between the standard estimate and the bootstrap-based estimate was small.

As this procedure is computationally expensive, we therefore refrained from applying it
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5 Higher CF probability in Europe under anthropogenic climate change

to the CMIP5-based data. More in-depth information about data sources can be found

in the Data availability section of Bevacqua et al. 20 .

Assessing the effect of all the non-linear interactions between the sea level components

(i.e. SLR, astronomical tides, waves, and storm surges), would render a continental

study of present and future climate unfeasible because of the high computational costs.

Therefore, in this study, we do not account for these non-linear interactions, except

for the influence of SLR on astronomical tides. As discussed in chapter 2, in princi-

ple, treating these components as independent variables can affect the accuracy of the

sea level extremes, especially in shallow water bodies. However, previous studies have

demonstrated the validity of the approach of treating the sea components as indepen-

dent for climate change projections72,88,162,202, and this approach is common in similar

large-scale studies87,196. These non-linear interactions would not qualitatively change

the conclusion of our large-scale study.

5.2.2 Return periods

As explained in section 3.3, we define the bivariate CF return periods54,138,185 as the

mean waiting time between events where sea level and precipitation simultaneously ex-

ceed the individual 1-year return levels (i.e. the ∼ 99.7th percentiles s99.7 and p99.7).

The marginal distributions of sea level and precipitation beyond the selection thresh-

olds are modelled by a Generalised Pareto Distribution (GPD). Copulas were fitted to

(uS , uP ) (obtained via empirical marginal cumulative distribution function (CDF)185),

and selected via Akaike information criterion from the families: Gaussian, t, Clayton,

Gumbel, Frank, Joe, BB1, BB6, BB7, BB8. Marginal distributions and copulas were

fitted through a maximum likelihood estimator (via the ismev 61 and VineCopula 140

R-packages). Goodness of fit of marginals and copulas was tested based on the Cramer-

von-Mises criterion51 (one-tailed; Nboot = 100 for copulas) (via the eva 10 and VineCop-

ula 140 R-packages respectively). The projected change (%) of the return period T (Fig.

5.2a) is estimated as ∆T (%) = 100 · (T 2070-2099−T 1970-2004)/T 1970-2004 for the individual

CMIP5 models.

5.2.3 Sampling uncertainty of ERA-Interim based CF return periods

To obtain the 95% sampling uncertainty range of the ERA-Interim based CF return

periods in Fig. 5.2c, we apply a resampling procedure. The uncertainty is computed in

the eleven representative locations whose return periods are shown in black in Fig. 5.2c.

We base our estimate of sampling uncertainty on the previously generated 240 bivariate
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sea level/precipitation time series (where surge and precipitation is identical, only astro-

nomical tides have been resampled). Each of these 240 bivariate time series are used for

a further resampling procedure by combining bootstrapped numerator and denominator

values of the return period expression (eq. (3.8)). The numerator bootstrapped µ values

are obtained based on resampling of the observed times elapsing between the selected

pairs (si, pi) employed for fitting the parametric probability density function (pdf); the

denominator bootstrapped values are obtained based on resampling of the observed pairs

(si, pi) used for the fit of the pdf. The final return period sampling uncertainty range is

defined as the 2.5th - 97.5th percentile interval of the 240·240 return period estimates.

This procedure is preferred to a classic resampling of all of the pairs, which - here -

would overestimate the obtained median return period due to the serial correlation of

the sea level time series. Based on a large sample of data without any serial correlation,

we estimated that our procedure overestimates by 30% the 95% sampling uncertainty

range (with respect to a classic resampling procedure). Thus, conclusions about the

detection of a climate change signal in the future (Fig. 5.2c) are conservative.

5.2.4 Delta change approach

We compute CF return period for future via the delta change approach98, i.e. multiply-

ing the ERA-Interim based historical return period T 1980−2004
Era by the individual CMIP5

model i variation of the probability T 2070−2099
Model i /T 1980−2004

Model i . The present day reference

period is the intersection of the ERA-Interim and the historical CMIP5 data, for which

sea level simulations are available. See appendix B: (Fig. B.4) for comparing return pe-

riods based on ERA-Interim and individual CMIP5 models, and (Fig. B.9) for CMPI5

model-mean return periods in present and future.

5.2.5 Return period for independent drivers

We estimate the CF return period assuming independence between precipitation and

sea level via shuffling (500 times) the cumulated precipitation time series (during 1980-

2014), and plugging an independent copula in eq. (3.8). Then, we extract the median of

the 500 return periods associated with the shuffled time series. The shuffling is required

because the average time elapsing between the events µ in eq. (3.8), and the marginals

FS and FP , are also affected by the dependence between precipitation and sea level.
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5.2.6 Attribution of return period variation

We carry out three experiments19 to assess how the CF probability would change in

future when only considering variation - with respect to the present - of: (a) the de-

pendence between sea level and precipitation, (b) the sea level and (c) precipitation

overall marginal distributions (i.e. the distribution of the sea level without reference

to precipitation, and vice versa). We estimate the relative change of the probability

that would have occurred for experiment (i) as ∆exp i = 100 · (T fut
exp i − T pres)/T pres (Fig.

5.3), where T pres is the return period for the present period and T fut
exp i is computed as

follows. Experiment (a): given the variables (Sfut, Pfut), we get the associated empiri-

cal cumulative distribution (USfut
, UPfut

). From the variables Spres and Ppres we define

the empirical CDFs FSpres and FPpres , through which we define Sa = F−1Spres
(USfut

) and

Pa = F−1Ppres
(UPfut

). The variables (Sa, Pa) have the same Spearman correlation and tail

dependence19 as (Sfut, Pfut), but marginal distributions as in the present period. We

compute the return period T fut
exp a based on (Sa, Pa). Experiment (b): given the variable

Spres, we get the associated empirical cumulative distribution USpres . From the variable

Sfut we define the empirical CDFs FSfut
, through which we define Sb = F−1Sfut

(USpres).

The variables (Sb, Ppres) have the same Spearman correlation and tail dependence as

during the present, but the marginal distribution of Sb is that of the future. We com-

pute the return period T fut
exp b based on (Sb, Ppres). Experiment (c): as experiment (b),

exchanging precipitation and sea level variables.

5.3 Results

The highest CF probability in present climate is experienced mostly along the Mediter-

ranean Sea (Fig. 5.1). The Atlantic coast appears to be particularly exposed to co-

occurring storm surges and extreme precipitation (appendix B, Fig. B.6). But here the

effective probability is slightly reduced because of the high tidal range (appendix B, Fig.

B.6): no CF occurs when the peak of the storm surge occurs during low astronomical

tide56. In present climate, about 3% of the coastline experience return periods of com-

pound flooding shorter than 6 years. These regions are the Gulf of Valencia (Spain),

the north-western Algeria, the Gulf of Lion (France), south-eastern Italy, the northwest

Aegean coast, southern Turkey, and the Levante region (Fig. 5.1). The statistical de-

pendence between sea level and precipitation greatly enhances the probability of CF

along the European coasts: when ignoring the dependence, the CF return period in-

creases by up to two orders of magnitude (365 years is the expected return period in the

independent case).
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Figure 5.1: Present probability of potential compound flood (CF). Return
periods of CF (co-occurring sea level and precipitation extremes, i.e. larger than the
individual 1-year return levels) based on ERA-Interim data.

In a warmer future climate, the probability of CF is projected to robustly increase

particularly along the west coast of Great Britain, northern France, the east and south

coast of the North Sea, and the eastern half of the Black Sea (Fig. 5.2a and Fig. B.7 in

appendix B). The fraction of coastlines experiencing return periods lower than 6 years is

projected to increase from 3% in present climate to 11% at the end of the 21st century.

Hotspot regions where return periods will fall below this value are the Bristol Channel

and the Devon and Cornwall coast in the UK, as well as the Dutch and German North

Sea coast (Fig. 5.2b).

The forced climate change signal appears to emerge from the uncertainty about present

probability mostly along the Western British Isles, the North and Baltic Sea (regions 3, 4,

and 5 in Fig. 5.2c). Along the Noorderzijlvest water board, which also faces the greatest

SLR, the model-mean probability of potential CF occurrence will triple. The Norwegian

West coast around Bergen will see a fivefold increase in potential CF frequency. Along

much of the Mediterranean coast, climate models do not agree about the direction of

future changes in CF probability, along the Strait of Gibraltar CF probability is even

expected to decrease (Fig. 5.2a and Fig. B.7 in appendix B).

Changes in CF probability can in principle be caused by changes in the probability of

extreme sea levels, in the probability of extreme precipitation, or in the dependence

between both hazards19,109,182,198. For Europe and the Mediterranean, the main driver

of future changes in CF probability appears to be changes in precipitation (Fig. 5.3).

A warmer atmosphere will allow storms to carry more moisture resulting in heavier

precipitation. This thermodynamic effect dominates along the North Atlantic storm

track in Northern Europe, and the Mediterranean storm track123. But weaker upward

winds will reduce or balance the thermodynamic increases of extreme precipitation along
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Figure 5.2: Future probability of potential compound flood (CF). (a) Multi-
model mean of projected change (%) of CF return periods, between future (2070-2099)
and present (1970-2004) climate. (b) Return periods for the future (2070-2099). Grey
points indicate locations where only 4 or fewer out of 6 models agree on the sign of the
return period change (3 or less out of 5 models in the Black Sea). Areas of grey points
in (a) and (b) are slightly different, as the former are computed taking into account
the past period (1970-2004) and the latter the period (1980-2004) (see delta change
approach in Methods). (c) Median value of CF return periods over regions defined
in (b) for past (1980-2014, based on ERA-Interim (Fig. 5.1)) and future (2070-2099)
climate, separately for individual models. For ERA-Interim, grey shading illustrates
the sampling uncertainty 95% range.

the North African coast123, and will even reverse the full precipitation response over

north-western Africa123 (panel c, also Fig. B.8 in appendix B). For most regions, the

considered models do not agree on the sign of changes in CF probability due to changes in

the dependence between precipitation and extreme sea levels (panel a, see also Methods).

Changes in the occurrence of extreme sea levels cause a CF probability decrease along

the Mediterranean coast, and an increase along the the west coast of Great Britain and

North Sea, and eastern cost of the Baltic Sea (panel b, also Fig. B.8 and B.7 in appendix

B).

5.4 Discussion and conclusions

Rising mean sea levels will pose the main threat along coastal areas in a warmer climate,

and changes in storm surges and precipitation will additionally alter the coastal flood

hazard. Coastal planning agencies in Europe are aware of these changing hazards and

will likely develop adaptation strategies57,64,201. Here we have demonstrated that CF

may pose a severe additional flood hazard that has to be taken into account for a full

risk assessment. In particular Northern Europe will experience an increasing CF hazard

beyond the effects of mean sea level rise, caused mainly by more intense precipitation in

a warmer climate.
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Figure 5.3: Attribution of probability change in potential compound flood
(CF) to changes in dependence and marginal distribution. Multi-model mean
of projected change (%) of CF return periods between future (2070-2099) and present
(1970-2004) when only taking into account future changes of: the overall (a) depen-
dence (Spearman and tail dependence19) between sea level and precipitation, (b) sea
level distribution, and (c) precipitation distribution (Methods). The total projected
probability variation (Fig. 5.2a) is not given by the sum of these three cases (a, b,
c), as the overall dependencies and marginal distributions do not contribute linearly to
the CF return periods. SLR is not considered in the definition of future sea levels (see
text). Grey points indicate locations where only 4 or fewer out of 6 models agree on
the sign of the return period change (3 or less out of 5 models in the Black Sea).

Ignoring the dependency in the occurrence of heavy precipitation and storm surges

may severely underestimate the CF impact in a warming climate198,215. Thus, in CF

prone areas, especially in areas experiencing an increasing CF hazard, additional coastal

protection measures may be required. As such interventions are a costly challenge with

potentially adverse effects on coastal societies and ecosystems, they need to be carefully

planned. Here, detailed local assessments are required integrating information about

precipitation, discharge, surges, topography and land-use, relative sea level rise and

existing and planned protection measures198. Our study identifies European regions

potentially facing CF in a warmer future climate and thereby provides a continental-

scale basis for such planning activities.
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6. Soil moisture drought in

Europe: a compound event of

precipitation and potential

evapotranspiration on multiple

timescales

In this chapter, we employ the conceptual model (presented in chapter 3) to assess

how variables employed in common drought indices, namely precipitation and potential

evapotranspiration (PET), contribute to soil moisture drought. The content of this

chapter was published in Manning et al. 93 .

6.1 Introduction

Drought indices incorporating precipitation and temperature through PET are often

employed as proxies of soil moisture35,187. As evapotranspiration (ET) is moisture lim-

ited in dry climates, the use of such drought indices has often been criticised. Thus, the

question remains whether such indices can provide an adequate representation of soil

moisture drought58. We, therefore, assess the contributions of both precipitation, PET,

and their dependence (on multiple timescales related to both meteorological drought

and heat waves) to soil moisture drought. Understanding the contribution of PET and

precipitation to soil moisture in different climates can help in the interpretation of future

changes depicted by drought indices.

Based on the conceptual model presented in section 3.1, we describe soil moisture as

a function of precipitation integrated over preceding months, and PET integrated over
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Table 6.1: Information about the FLUXNET sites used throughout this study.

Site Site Name Lat. Long. Site Type

(a) Dripsey, Ireland 51.99o N 8.75o W Grassland
(b) Hainich, Germany 51.08o N 10.45o E Forest
(c) Klingenberg, Germany 50.89o N 13.52o E Grassland
(d) Oensingen, Switzerland 47.28o N 7.73o E Grassland
(e) Pang/Lambourne, UK 51.45o N 1.27o W Forest
(f) Le Bray, France 44.72o N 0.77o W Forest
(g) Amplero, Italy 41.9o N 13.6o W Grassland
(h) Las Majadas del Tietar, Spain 39.94o N 5.77o W Savanna/Grassland
(i) Bugacpuszta, Hungary 46.69o N 19.6o E Grassland
(j) Mitra IV Tojal, Portugal 38.48o N 8.02o W Grassland
(k) Vall d’Alinya, Spain 42.15o N 1.45o E Grassland

recent days. This conceptual framework allows us to capture days of extreme temper-

ature within the PET variable and its dependence on antecedent conditions. We aim

to demonstrate the individual contributions of precipitation and PET to the estimation

of soil moisture drought and highlight where, when and over what integration period

lengths PET and its dependence with precipitation are important for the estimation of

soil moisture.

6.2 Data

We employed the Fluxnet dataset11 for this study using 11 stations situated across

Europe. The sites were selected based on the data quality and length, and also following

the recommendations of Rebel et al. 129 . Table 6.1 provides a summary of the site

characteristics. To aid the interpretation of the results, we classify the sites as wet or

dry based on values of soil moisture. Locations are provided in Fig. 6.1. At each site, soil

moisture measurements from the top 30cm of soil are provided along with precipitation

data as well as the variables required for the calculation of PET via the reference crop

Penman-Monteith equation, as described in ref.212. These variables include incoming

solar radiation, temperature, wind speed and relative humidity. Among the selected

sites, two general land cover types are available; grassland and forest. The data used

here are at a daily resolution. We use soil moisture values for the summer months of

June, July and August (JJA). For the contributing meteorological variables, we used

observations that extend back into previous months in order to calculate integration

periods prior to a given soil moisture observation.
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Figure 6.1: Fluxnet sites. Locations of Fluxnet sites employed for this study.

Figure 6.2: Soil moisture drivers. Schematic of the variables used in this study to
construct the soil moisture model.

6.3 Model development

We use the conceptual model presented in section 3.1 in the version fh|Ỹ(h|Ỹ), which

allows us to describe soil moisture h as an impact of contributing meteorological variables

Y. Details about the statistical inference of the multivariate pdf fh|Ỹ(h|Ỹ), including

the selection of the PCC, are given in appendix C. The contributing meteorological

variables include a short-term precipitation variable (Y1PS), a long-term precipitation

variable (Y2PL) and a PET variable (Y3PET) that are integrated over periods L1, L2 and

L3 respectively. A schematic representation of the variables modelled is given in Fig.

6.2.
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6 Soil moisture drought in Europe: a compound event of precipitation and PET

Y1PS and Y2PL respectively represent the most recent and antecedent precipitation that

influence the short and long-term variability of soil moisture. Their respective integration

periods L1 and L2 are non-overlapping. Two precipitation variables are required to

better capture the temporal distribution of precipitation that would otherwise be lost

using one long-term integration only.

Y3PET represents PET integrated over the period L3. PET is often employed as an

estimate of ET in drought indices given the lack of ET data. We calculate PET using

the reference crop Penman-Monteith equation as defined in ref.212 where it is derived

from incoming solar radiation, temperature, wind and the actual and saturation vapour

pressures. Y3PET includes temperature within its calculation and so can capture heat

waves that influence the drying of soil moisture. Depending on the question at hand,

the integration length L3 is varied, more details are given in the next sections.

When performing conditional sampling of h, given observed Y, we produce a stochastic

time series of h. Repeated simulations conditioning on observed Y will produce multiple

time series with varying statistics and agreement with observed h values125. Throughout

this study, given an observed time series of Y, we produce an ensemble consisting of 1000

members of h time series and obtain a probabilistic forecast of h at each time step.

6.3.1 Meteorological predictor selection

We describe soil moisture h as a function of two precipitation variables, Y1PS and Y2PL ,

integrated over periods L1 and L2, and a PET variable, Y3PET , integrated over the period

L3. By developing a statistical model with these variables and soil moisture, we look to

answer the following three questions:

1. What are the individual contributions of the meteorological variables Yi to the

estimation of soil moisture h on timescales related to meteorological drought and

heat waves?

2. What relevance does the dependence between antecedent precipitation (Y2PL) and

recent PET (Y3PET) have for the estimation of low soil moisture values?

3. What relevance does PET have for the estimation of soil moisture over varying

integration lengths L3?

To answer these questions, we propose two sets of Y variables, S1 and S2. Questions

1 and 2 are then approached using variable set S1 while Question 3 is approached

using variable set S2. The difference between S1 and S2 is the integration L3 chosen
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at each site. A short integration period is considered for PET in S1, while a long

integration period is considered for PET in S2. For each value of Li used, the contributing

meteorological variable Yi may be defined as:

Y1PS (t) =
t∑

t−L1+1

p(t)

Y2PL(t) =

t−L1∑
t−(L1+L2)+1

p(t)

y3PET (t) =
t∑

t−L3+1

pet(t),

(6.1)

where p(t) and pet(t) are respectively daily precipitation and PET.

We address the first two questions with variable set S1. The selected Li for S1 must

result in Y variables that provide satisfactory estimates of soil moisture h, hold physi-

cally meaningful dependencies and capture timescales relevant for both meteorological

drought and heat waves. Physically meaningful dependencies are obtained by constrain-

ing Li such that L1 = L3 and through ensuring that there is no overlap between L2 and

the short-term integrations.

Based on the analysis described below, we find a difference between grassland sites and

forest sites. Forest sites require a longer integration L1. This is possibly explained by

the deeper root systems at forest sites which filter the influence of short-term variability

in rainfall on the integrated soil column. We therefore choose two sets of L; LG and LF

for grassland and forest sites respectively. At all grassland (forest) sites, the same LG

(LF) are used.

We choose integrations of LG1 = LG3 = 7 and LG2 = 63 for grassland sites. For forest

sites, we choose integrations of LF1 = LF3 = 30 and LF2 = 60. We thus use information

of precipitation over the previous 70 and 90 days for each daily soil moisture observation

at grassland and forest sites respectively.

To select LGi (LFi) in S1, we firstly calculate the Spearman correlation between Yi(t)

and h(t) for multiple integrations within a window of 120 days prior to day t. We

then choose the integration length that maximises the Spearman correlation for each Yi.

Integration periods are then constrained such that LG1 = LG3 (LF1 = LF3). This en-

sures physically meaningful dependencies and avoids arbitrary dependencies that would

otherwise arise between differing LG1 (LF1) and LG3 (LF3).
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The sensitivity of the conditional model’s performance, in representing h conditioning

on Y, to changes in LF (LG) is tested by varying the short-term LG (LF) by +/−4

days while the long-term integration LG (LF) is varied by +/−10 days. Changes in

performance are found to be minimal (not shown). Assuming the same LG (LF) at all

grassland (forest sites) and constraining the integration periods is therefore expected to

have little weight in the outcome of this analysis.

We acknowledge in S1 that the influence of most recent daily temperature extremes

on soil moisture is potentially filtered out at forest sites by setting LF3 = 30. This

is addressed in variable set S2 where we assess the relevance of the selection of L3 to

the estimation of h (Question 3). In S2, two models are constructed using a short and

long-term integration of L3. The same LG1, LF1, LG2, and LF2 as S1 are used while

LG3 and LF3 are set to 7 and 70 days, and 7 and 90 days respectively.

6.3.2 Model evaluation metrics

The model simulations are evaluated overall and in their ability to represent low values

of soil moisture h. Using the Brier score (BS), we evaluate the accuracy of probabilistic

predictions of low h values defined as those below the 15th percentile of observed soil

moisture (see appendix A.7). The model is also evaluated in its ability to capture the

persistence of drought conditions using an empirical drought persistence probability

(PP ), defined as:

PP = Pr(ht+1 < F−1h (0.15) | ht < F−1h (0.15)), (6.2)

that is the probability that a drought (soil moisture is below the 15th percentile) at time

t+ 1 is observed, given a drought at time t.

6.4 Results

The set of variables S1 (described in section 6.3.1) are employed to evaluate the con-

tributions of the individual Y variables and that of their dependence structure to soil

moisture. To achieve this we perform a number sensitivity simulations and compare

them with a control simulation (CTRL). All simulations carried out are done through

a K-fold cross-validation to avoid over-fitting. K here is the number of summers in a

time series at a given site. In each simulation, we thus remove one summer at a time

when fitting the copula parameters but use the same marginal PDFs for each period. In

this way we only cross-validate the PCC rather than the entire multivariate statistical

64



6.4 Results

model. For each simulation, we then produce a probabilistic forecast of h consisting of

1000 members through conditioning on specified values of Y .

6.4.1 Model performance

The CTRL simulation is performed through sampling h conditioned on observed values

of Y . The performance of CTRL may be qualitatively gauged from Fig. 6.3. Plots

shown in panels (a) to (e) are results from wet sites while those from (f) to (k) are

results from dry sites. The mean value of h from CTRL at each time step can be seen

to follow the temporal evolution of observed soil moisture (hobs) quite well while hobs is

generally found within the 95% confidence interval of CTRL. Also shown within each

panel in Fig. 6.3 are the persistence probabilities of low h for observed (PPobs) and

mean simulated h (PPsim). PPsim and PPobs are found to be very similar at all wet

sites and most dry sites although PPsim is generally less than PPobs at dry sites. A

comparison of the observed ACF, estimated up to order 10, with the ACF derived from

the mean of the simulation also showed close correspondence at each site (not shown).

Such results indicate good agreement between the observed h and simulated mean h in

terms of temporal evolution and the persistence of low values.

To provide information of the performance of the model in terms of the probabilistic

forecast, we calculate Brier scores (BS) and Brier Skill Scores (BSS) for CTRL at each

site (Table 6.2). In general we see good BS and positive BSS that range from 0.06 to

0.12 and 0.04 to 0.51 respectively with medians of 0.09 and 0.25. These BSS indicate

that the model is better than the climatology at predicting low soil moisture values.

Low BSS values are seen at Site (c) where we also see poor correspondence between hobs

and the mean of CTRL. Optimising the performance of the model at this site through

changing integration periods does not bring a noticeable improvement indicating that

the proposed model and variables included do not predict soil moisture correctly at all

sites. However, with satisfactory results generally obtained at most sites, we employ the

model for use in sensitivity analysis in a number of tests presented below.

6.4.2 Assessment of contributing variables to soil moisture

We test the contribution of Y1PS (short-term precipitation), Y2PL (long-term precipita-

tion), and Y3PET (PET), to the estimation of h in three sensitivity simulations SENS-

Y1PS , SENS-Y2PL , and SENS-Y3PET respectively. For each sensitivity simulation, h is

sampled conditioning on the median value of the respective variable to be tested and
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Figure 6.3: Validation of the modelled soil moisture time series. Observed time
series (red) alongside the cross-validation time series of the CTRL mean (black) and the
95% prediction interval (grey), obtained from 1000 simulations, at wet sites are (a) to
(e) and dry sites (f) to (k). Also provided within each panel are the order 1 persistence
probabilities calculated from the observed (PPobs) and CTRL mean (PPsim) timeseries.
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Table 6.2: Assessment of contributing variables to soil moisture (statistics).
Brier scores (BS), Brier Skill Scores (BSS) and mean bias for CTRL, SENS-Y1PS

,
SENS-Y2PL

, and SENS-Y3PET
simulations calculated for soil moisture values below the

observed 15th percentile. Bias values for SENS-Y1PS
, SENS-Y2PL

, and SENS-Y3PET

are given as percentage change relative to CTRL

Site Score CTRL SENS-Y1PS SENS-Y2PL SENS-Y3PET

(a) BS 0.09 0.10 0.12 0.10

BSS 0.25 0.21 0.01 0.18

Bias 3.89 +5% +113% +45%

(b) BS 0.11 0.13 0.10 0.11

BSS 0.15 -0.01 0.17 0.15

Bias 4.33 +107% -1% +33%

(c) BS 0.12 0.14 0.11 0.12

BSS 0.04 -0.1 0.13 0.06

Bias 10.66 +51% -24% +2%

(d) BS 0.06 0.06 0.09 0.08

BSS 0.51 0.49 0.26 0.39

Bias 3.52 +45% +149% +83%

(e) BS 0.09 0.10 0.09 0.12

BSS 0.28 0.25 0.27 0.03

Bias 3.62 -15% +78% +81%

(f) BS 0.08 0.07 0.06 0.13

BSS 0.36 0.43 0.53 -0.01

Bias 0.37 -215% +207% +720%

(g) BS 0.09 0.09 0.11 0.09

BSS 0.31 0.24 0.15 0.30

Bias 1.48 +43% +86% +6%

(h) BS 0.12 0.13 0.12 0.13

BSS 0.04 0.00 0.05 0.003

Bias 3.28 +9% -3% +4%

(i) BS 0.12 0.13 0.12 0.13

BSS 0.07 0.002 0.04 -0.06

Bias 1.24 -9% +5% +52%

(j) BS 0.12 0.12 0.12 0.12

BSS 0.09 0.10 0.05 0.06

Bias 2.8 -8% +10% +16%

(k) BS 0.08 0.13 0.12 0.08

BSS 0.36 0.01 0.09 0.37

Bias 1.05 +205% +146% +10%
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the observed values of the other two Y variables. To assess the contributions of all vari-

ables, we compare the mean of each simulation with the CTRL mean. We also compare

the probabilistic forecasts from SENS-Yi with CTRL using the BS, BSS and the mean

ensemble bias computed for values of h below the observed 15th percentile (Table 6.2).

At wet sites, precipitation is generally seen to have the most influence on low soil moisture

values while PET can act to amplify the low soil moisture anomaly during drought

periods. Comparing the means of the three sensitivity simulations with the mean of

CTRL (Fig. 6.4), larger overestimations of low h values with respect to CTRL are

generally seen in either of the simulations assessing the influence of a precipitation

variable, SENS-Y1PS or SENS-Y2PL , than is seen in SENS-Y3PET . Underlining this

are larger changes in positive bias of low soil moisture values seen from SENS-Y1PS

or SENS-Y2PL than from SENS-Y3PET (Table 6.2). A comparison of BSS for each

simulation in Table 6.2 also shows a larger reduction in skill of forecasting values below

15th percentile in either SENS-Y1PS or SENS-Y2PL than in SENS-Y3PET . Focusing on

drought events at wet sites (a), (b) and (d) in 2003 and 2006, years in which heat

waves have also occurred27,130, we see from the mean of the simulations (Fig. 6.5) that

removing the influence of precipitation can lead to the misspecification of a drought event

with the green line largely above the black line (CTRL). On the other hand, removing

the influence of PET can result in the underestimation of the severity of the event with

the blue line only just higher than the black during a drought event.

At dry sites, we see that precipitation again holds the main influence over soil moisture

while PET generally offers little added benefit to the estimation of soil moisture. The

main differences of CTRL with SENS-Y1PS and SENS-Y2PL are found for high values

of soil moisture (Fig. 6.4). Low values in these sensitivity simulations are generally

equivalent with CTRL as the medians of Y1PS and Y2PL are associated with relatively

low values due to the positively skewed nature of the variables’ distributions. Little or

no difference is seen between SENS-Y3PET and CTRL simulations for low values of soil

moisture. Large percentage changes in bias for low soil moisture values are seen at sites

(f) and (i), though the actual changes in soil moisture are relatively low (Table 6.2). This

would be expected at dry sites during summer where soil moisture normally reaches low

levels such that ET is moisture-limited and will diverge from PET. Extremes of PET

driven by extreme temperatures would then have little added effect to the severity of

soil moisture drought in dry locations.
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Figure 6.4: Assessment of contributing variables to soil moisture. Comparison
of the mean of the cross-validaiton simulations of CTRL with SENS-Y1PS

, SENS-Y2PL

and SENS-Y3PET
at wet sites (a) to (e) and dry sites (f) to (k). Values are ordered

according to CTRL from low to high such that the closer the correspondence of points
to the diagonal, the smaller the change in the estimation of soil moisture in the given
sensitivity simulation.

6.4.3 Assessing the relevance of the dependence between the con-

tributing variables

The contribution of the dependence between Y2PL and Y3PET to the estimation of low h

values is assessed using sensitivity simulation IND-Y2PL . IND-Y2PL is used to highlight

where interactions between drought and heat wave conditions, arising through land-

atmosphere interactions, act to amplify drought conditions. To illustrate the dependence

between Y2PL and Y3PET , we calculate Spearman’s ρ and a measure of tail dependence,

λq, calculated as:

λq = Pr(Y3PET > F−13 (q) | Y2PL < F−12 (1− q)) (6.3)

where q = 0.9 in this case. λ0.9 can be interpreted as the fraction of days when Y3PET

was greater than its observed 90th percentile when Y2PL was less than its 10th percentile.
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Figure 6.5: Assessment of contributing variables to soil moisture during 2003
and 2006 heat waves. Mean cross-validated time series of simulations assessing the
contributions of precipitation and PET to the estimation of soil moisture and CTRL
(black) for the summers (JJA) of 2003 and 2006 at wet sites (a), (b) and (d). Time
series of mean simulated values are presented for SENS-Y2PL

(green) and SENS-Y3PET

(blue) at wet sites (a) and (d) while time series of SENS-Y1PS
(green) and SENS-Y3PET

(blue) are presented for site (b).

For two independent variables, the expected value of λq is 1 − q. Values of ρ and λq

for each site are given in Fig. 6.6. At many sites we observe a negative dependence

between Y2PL and Y3PET , as measured by ρ, and an increased probability of extreme

PET (Y3PET) when antecedent precipitation (Y2PL) had been extremely low.

To test the relevance of such dependence in IND-Y2PL , we break the dependence between

Y2PL and the short-term variables, Y1PS and Y3PET . This is achieved by shuffling Y2PL

such that it is randomly associated with them. A probabilistic forecast of h, consisting

of 1000 members, is then produced sampling from the multivariate distribution where we

condition on the observed values of Y1PS and Y3PET and the shuffled Y2PL . To account

for sampling variability of the shuffling process, we produce 1000 IND-Y2PL probabilistic

forecasts.

We obtain a kernel density estimate of the PDF produced from each of the 1000 IND-

Y2PL simulations. The mean density and the 95% confidence interval of IND-Y2PL

PDFs are calculated and presented alongside the PDFs of CTRL and hobs (Fig. 6.6).

The statistical significance of the difference between the CDFs of CTRL and IND-Y2PL

is assessed at the 5th, 10th, and 15th percentiles of observed soil moisture. CTRL is

considered significantly different for a given percentile if the associated soil moisture
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Figure 6.6: Assessment of the contributing variable dependencies to soil mois-
ture. Kernel density estimates of observed soil moisture (red) and soil moisture sim-
ulated via cross-validation from probabilistic forecasts CTRL (black) IND-Y2PL

(blue)
simualations. The blue line and shading respectively represent the mean density and
95% confidence interval obtained from the 1000 IND-Y2PL

simulations.

value of CTRL is less than the lower bound of 95% confidence interval of that percentile

from IND-Y2PL . This would signify that the probability of values below that percentile

are underestimated when the the dependence between Y2PL and Y3PET is broken.

Statistically significant differences are found between all three percentiles at Site (d)

where we also see a noticeable difference between PDFs (Fig. 6.6 (d)). A negative

dependence as well as a significant dependence in the tails is also observed here. Site (d)

lies in a transitional region where land-atmosphere interactions can lead to the mutual

reinforcement of drought and heat wave events144. This result highlights the importance

of the interplay between drought and heat wave conditions, driven by land-atmosphere

interactions, to the reinforcement of drought conditions in such locations.

Statistically significant differences between the percentiles tested are also found at wet

sites (a), (b) and (e) and dry sites (g) and (j), though relatively little difference is

observed between CTRL and IND-Y2PL PDFs at these sites for values below the tested

percentiles (Fig. 6.6). We observe negative dependencies (ρ) and tail dependencies (λq)
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at these sites which highlights that the concurrence of such conditions may be important

for the estimation of low values of soil moisture. These dependencies are also observed

at other dry sites but no significant differences between assessed percentiles are found.

Such dependencies at these sites are perhaps of little relevance for soil moisture during

summer as extremes of PET may be energy-limited in wet climates while soil in dry

climates may have little available moisture for ET. In dry conditions then, extremes of

PET in combination with extremely low antecedent precipitation will have little effect

on moisture levels in soil.

6.4.4 Relevance of PET over short and long integration periods

The variable set S2, as described in the Meteorological Predictor Selection section, is

used to demonstrate the relevance of PET, integrated over various durations LG3 and

LF3, to the estimation of soil moisture h. We fit two models at wet sites (a), (b) and (d)

where we see contributions of PET to the estimation of soil moisture drought in variable

set S1 (Fig. 6.5). The integration periods used for precipitation variables, Y1PS and

Y2PL , in S1 remain the same. For the simulation PET-INTS , we set LG3 = LF3 = 7

and for the simulation PET-INTL we set LG3 = 70 and LF3 = 90.

Based on the mean of the simulations (Fig. 6.7), better representation of drought onset

can be seen at sites (a) and (d) in the PET-INTS simulations where the black line

generally follows red (observed) at the beginning of an event when initial drying is taking

place. On the other hand, drought persistence is generally captured better by the PET-

INTL simulation where the blue line remains low with the red line in comparison to the

black. Better BSS are found for simulations using a long-term integration of PET at

sites (a) and (b). Increases of BSS, from PET-INTS to PET-INTL, of 0.24 to 0.36 and

0.18 to 0.25 are found at each site respectively while little difference is seen between

simulations at site (d) with BSS equal to 0.51 and 0.52.

Although these results are somewhat qualitative, they highlight that both short- and

long-term integrations of PET are important for the estimation of drought events in

this framework. Longer integrations are generally better in capturing the persistence

of drought conditions as they can account for the memory soil moisture holds of dry-

ing during the event. Short-term integrations however, are better in capturing drought

onset as they are able to account for short intense periods of drying that can acceler-

ate the propagation of meteorological drought to soil moisture drought. With drought

events expected to set in quicker in a warming climate175, it will be important to detect

such changes in the intensity of drying over short periods in spring and summer that

are filtered out in longer integrations of PET. This may be of particular relevance in
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Figure 6.7: Sensitivity of soil moisture to the integration period of PET.
Mean cross-validation time series of simulations from models PET-INTS in which PET
is considered over a short integration period (black) and PET-INTL in which PET is
considered over a long integration period (blue) along with the observed time series
(red) for the 2003 and 2006 drought events at wet sites (a), (b), and (d).

Europe where early onset of drought conditions can have large implications for extreme

temperatures in summer186.

6.5 Discussion and conclusions

In this study, based on the conceptual model presented in section 3.1, we have analysed

soil moisture drought over Europe as a compound event of variables employed in com-

mon drought indices, namely precipitation and potential evapotranspiration (PET), and

assessed the individual roles of these variables and that of their dependence structure

to the estimation of soil moisture. The overall aim was to explore the compound nature

of soil moisture drought and the differences that exist between wet and dry climates.

Within the model we considered precipitation and PET over timescales related to meteo-

rological drought and heat waves respectively. These timescales were considered to assess

the influence of heat wave conditions on soil moisture, as well as dependencies driven by

land-atmosphere interactions that can cause a mutual reinforcement between drought

and heat wave events in Europe. We applied the model to data from 11 Fluxnet sites

situated in wet, transitional and dry climates in Europe and generally found satisfactory

performance of the model. We thus employed it in a number of sensitivity experiments
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to assess the relevance of contributing variables and their dependence structure to the

estimation of soil moisture drought.

Results obtained from sensitivity experiments were in line with previous studies. Pre-

cipitation was found to hold the main control over soil moisture drought. PET was

required only when it departs from normal conditions188 to partly explain the severity

of drought conditions in wet climates145,171, while little or no contribution was found

in dry climates89 during summer. The concurrence of extremely low antecedent pre-

cipitation with extremely high PET was found to be most relevant at a site situated

in a transitional climate region between wet and dry climates where land-atmosphere

interactions are most relevant for the development of soil moisture drought146. The

concurrence of these conditions was also seen at many dry sites though were found to

have little relevance for soil moisture. This lack of relevance at dry sites is presumably

related to the limited availability of moisture in soil for actual evapotranspiration (ET)

to occur such that PET and Extremes of PET could have little influence to a low soil

moisture anomaly.

The aforementioned contribution of PET is based on a short-term integration period

that was used to capture the influence of heat waves on soil moisture. At wet sites,

this short integration period is found to be effective in describing the onset of drought

events as it can capture initial drying that occurs on a daily basis. It can however be

ineffective in capturing the persistence of drought conditions, which longer integrations

can better account for, as it neglects the memory soil moisture may hold of PET and

the intense drying that may have occurred throughout a drought event. The differences

found between short and long integrations of PET may become relevant in the analysis

of changes in the onset of drought events using drought indices. A warmer climate may

cause droughts to set in quicker175 and lead to flash droughts108. Such drying may

be hidden through the use of longer integration periods of PET in an index such as

the Standardised Precipitation Evapotranspiration Index (SPEI), or through a recursive

model used for the Palmer Drought Severity Index (PDSI) that retains memory of PDSI

values from previous time steps.

Advantages of using drought indices include the simplicity they offer, as well as the

widespread availability of meteorological datasets compared to those of soil moisture.

Although they are not specifically designed to represent soil moisture144, indices such

as the SPEI, PDSI and the Reconaissance Drought Index (RDI) provide a convenient

means of combining precipitation and PET into a kind of impact function that may be

implicitly linked to soil moisture.

However, soil moisture drought is not a simple phenomenon to characterise with drought

indices due to differing contributions and relevant integration periods of meteorological
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variables in wet and dry climates. The use of a climatic water balance (Precipitation-

PET ) in the SPEI and PDSI assumes over-simplified relationships between precipitation,

PET and soil moisture142, and implies that the statistical relevance of precipitation and

PET to the estimation of soil moisture are the same over a given integration period.

With such simplifications comes a loss of information such as short intense periods of

drying that may be filtered out through the inclusion of redundant information when

using a long integration period for PET.

Through the inclusion of PET, these indices are expected to provide a better picture of

changes in drought conditions in a warming climate than indices that use precipitation

alone such as the Standardised Precipitation Index (SPI). Ubiquitously applying indices,

that incorporate PET, across different climates can provide a general overview of the

response of drought conditions to global warming. It is however important to note

that severe drought, as depicted by these indices, will have a different meaning for soil

moisture drought in wet and dry climates. ET is limited by moisture availability and

so will diverge from PET in dry conditions leading to an overestimation of the actual

drying taking place with respect to soil. In contrast, land surface models account for

this moisture limitation by capturing the physical relationship between PET and soil

moisture, they can therefore provide a more reliable estimate. Their use within coupled

climate models to study changes in soil moisture drought is particularly advocated for

by Berg et al. 16 , who also demonstrate the added complexity of diverging changes to

soil moisture at different soil depths that cannot be disentangled using drought indices.

Despite discrepancies between PET and ET in dry conditions, extremes of PET will

still be indicative of the drying potential of the atmosphere. Such atmospheric drying

potential may possibly have adverse effects on crop yields and contribute to other envi-

ronmental hazards such as wildfires that are mediated by the availability of moisture in

vegetation55,132.

Much information of soil moisture and other drought impacts may be deduced from

drought indices and their response to a warming climate. To do so requires careful

interpretation and detailed knowledge of the involved variables’ influence on soil moisture

in a given climate. It is therefore important that drought indices incorporating PET

are interpreted within the context of the climate in which they are applied, whilst also

keeping in mind the applications they are designed for.

In our impact focused approach, we have made use of the little soil moisture data that

is available across different locations and climate types in Europe to demonstrate the

compound nature of soil moisture drought during summer. These results provide further

insight into the relationship between soil moisture and drought indices that incorporate

PET. It is hoped that this insight will aid with the interpretation of drought indices in
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a given climate and season so that as much information as possible may be gained from

their application.
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”We are at the very beginning of time for the human race. It is not

unreasonable that we grapple with problems. But there are tens of thousands

of years in the future. Our responsibility is to do what we can, learn what

we can, improve the solutions, and pass them on.”42

- Richard Feynman, Engineering and Science (1955)

The main objectives of this thesis were outlined in the Introduction (chapter 1) as: (1)

develop a conceptual model for compound events (CEs), implemented via Pair-copula

constructions (PCCs). Based on this model, study compound flooding at (2) the local

and (3) continental scales, and (4) analyse soil moisture drought. Here, with respect to

these four parts, I summarise the main results and discuss their implications. This will

be followed by an outlook including future potential research on CEs.

7.1 Summary and implications

Conceptual model development. We developed a conceptual model, implemented

via pair-copula constructions (PCCs), which allows for quantifying the CE hazard proba-

bility or risk, as well as the associated uncertainty (Bevacqua et al. 19). In the conditional

version, the model includes predictors, which could represent for instance meteorological

processes. The inclusion of predictors in the model (1) provides insight into the physical

processes underlying CEs, as well as into the temporal variability of CEs, and (2) allows

for statistically downscaling CEs and their impacts. The non-conditional version allows

for estimating statistical characteristics of rare events, such as large return periods, and

the associated uncertainties.

The downscaling feature of the conditional model can be used to extend the risk as-

sessment back in time to periods where observations of the predictors are available, but

not of the contributing variables and impacts, or to assess potential future changes in
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CEs based on predictors from climate model projections. The conceptual model is par-

ticularly useful to downscale large-scale predictors from climate models in cases where

the local contributing variables driving the impacts of CEs are either not realistically

simulated, or not simulated at all by the available climate models. As such, the model

can be used to assess future risk of CEs based on multi-model ensembles as available

from the CMIP168 and CORDEX52 archives. When using this or other conditional sta-

tistical models for downscaling in a climate change context, the user should ensure that

the model can properly extrapolate information in a climate that is different from that

where the model is calibrated98.

Here, we successfully employed PCCs for implementing the conceptual model. We sug-

gest considering the use of PCCs for modelling CEs which involve more than two con-

tributing variables, or when predictors are included in the system as additional variables.

PCCs are particularly useful to model CEs, when the variables have different dependence

structures, e.g., when only some of the variable pairs are characterised by tail depen-

dence. To model such types of structures, even multivariate parametric copulas, which

were introduced in climate science to overcome some difficulties in modelling multivariate

density distributions141, lack of flexibility. PCCs are more convenient: by decomposing

the dependence structure into bivariate copulas, they give high flexibility in modelling

generic high dimensional systems. The implementation of the conditional conceptual

model via PCCs requires to employ a conditional pdf decomposed via PCCs; although

this implementation is in principle not straightforward, I encourage the interested users

in using the R-package CDVineCopulaConditional (Bevacqua 18) which strongly simplify

the implementation process.

Uncertainty estimates are essential to avoid drawing misleading conclusions about CE

risk estimates. The developed model allows for a straightforward quantification of sam-

pling uncertainties, which we suggest to quantify when assessing the CE hazard or risk.

However, uncertainties can be very wide when the sample of data available for the model

calibration is relatively small (chapter 4). In general, the amplitude of the uncertainties

increases with the ratio between the dimension of the system and the length of available

data for model calibration. Furthermore, we showed that uncertainties are even larger

when data show serial correlation, indeed it is like the effective sample size of data with

serial correlation is smaller than those without148. Thus, in practice, uncertainties asso-

ciated with CE risk estimates can be very large because of the shortness of the available

data: reducing these uncertainties is a challenge. To meet this challenge, employing

a well performing dynamical model to extend the available data where to calibrate a

statistical model might be helpful in some cases182.
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The developed conceptual model can be employed for modelling and understanding

other types of CEs. After the successful application of the conceptual conditional model

to the studies of compound flooding and soil moisture drought, we have employed the

model in Switanek et al. 166 for statistical downscaling of multi-site daily precipitation

over river catchments. In this context, the conceptual model allows for representing the

spatial inter-dependencies of the precipitation field over the river catchment. A good

representation of these dependencies is relevant because they are a crucial driver of the

river discharge, as highlighted, e.g, in a recent perspective paper on CEs published in

Nature Climate Change 215. Furthermore, Liu et al. 85 employed a very similar conceptual

model to ours for understanding the influence of global warming and different ENSO

states on floods in Texas. Thus, we encourage to employ the conceptual model for gaining

a better physical understanding of other CE types, and for estimating the associated

CE risk.

CF in Ravenna (Italy). In chapter 4 (Bevacqua et al. 19), we adapted the developed

conceptual model to study compound flooding (CF) in Ravenna. We explicitly modelled

the impact (water level) of the CF in the river mouth as a function of the downscaled

sea and river levels. The performance of the model in simulating the impact is very

satisfactory, such that the model may be used for flooding forecasting and warning. Here,

the model was implemented both in the non-conditional and conditional versions. The

former does not include meteorological predictors, and it allows for obtaining flooding

return period estimates including uncertainties. Similar return period estimates were

obtained via the conditional model, which was calibrated over the period 2009-2015 by

including meteorological predictors obtained from the ECMWF ERA-Interim reanalysis

dataset, and then used to extend the CF analysis to the full period of 1979-2015. This

extension allows for getting a more robust estimation of the return periods. During the

period 1979-2015, we did not observe any long-term trend in the CF return periods.

The expected return period of the highest CF observed is about 20 years; however, the

associated 95% confidence interval is very large due to the shortness of the data used

for calibrating the model.

Ignoring the dependence between sea and river levels would result in an underestimation

of the CF probability: the expected return period of the highest CF observed increases

from about 20 to 32 years when switching from the dependent to the independent case.

In Ravenna, the dependence between sea and river levels should be considered for flood

risk assessment.

Present and future CF probability along the European coast. In chapter 5

(Bevacqua et al. 20) we assessed the CF hazard along the European coasts both in the
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present and in future climate according to the business-as-usual (RCP8.5) scenario.

To enable a continental scale assessment, we limited the analysis to the probability of

potential CF, i.e. we modelled the probability of a co-occurrence of extreme sea level and

heavy precipitation. Under current climate conditions, the locations experiencing the

highest CF probability are mostly located along the Mediterranean Sea. In the future,

Northern Europe will experience an increasing probability of CF beyond the effects of

mean sea level rise, caused mainly by more intense precipitation in a warmer climate.

Rising mean sea levels will pose the main threat along coastal areas in a warmer cli-

mate, and changes in storm surges and precipitation will additionally alter the coastal

flood hazard. Coastal planning agencies in Europe are aware of these changing haz-

ards and should develop adaptation strategies57,64,201. We demonstrated that CF may

pose a severe additional flood hazard that has to be taken into account for a full risk

assessment215. Thus, in CF prone areas, especially in areas experiencing an increasing

CF hazard, additional coastal protection measures may be required. In these areas,

detailed local risk assessments are required to plan adaptation strategies. To this end, a

complex modelling chain is required198 which can simultaneously integrate information

about precipitation, discharge, surges, topography and land-use, relative sea level rise

and available or planned flood protections. Our study identifies European regions po-

tentially facing CF in a warmer future climate and thereby provides a continental-scale

basis for adaptation planning activities.

Local risk assessments of CF should consider the dependence between precipitation and

storm surge to avoid potential severe risk underestimation. Ignoring this dependence

leads to a large increase (up to two orders of magnitude) of the CF return periods in this

study20, while this increase is smaller for CF in Ravenna (from 20 to 32 years) according

to Bevacqua et al. 19 . The different methodology used in the two studies explains these

differences (and also differences found between other studies in the literature): (1) the

contribution of the dependence is typically larger when employing bivariate AND return

periods as in the European study, rather than an impact function as in the Ravenna case

study (not shown). (2) As the sea level is typically more correlated with precipitation

than with river levels, considering precipitation (European study) rather than river levels

(Ravenna’s study) enhances the relevance of the dependence on the final CF impact.

Depending on the employed methodology and on the analysed location, the contribution

of the dependence for CF might result more or less large; however, the dependence should

be always considered to avoid potential severe risk underestimation19,20,119,182,198,208,209.

Improving the CF monitoring system would allow for a better understanding of this type

of flooding. To monitor CF in a river mouth, it is necessary to have water level data at

a station where both the influence of sea and river are seen. We found a few locations
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where these stations exist119 as, maybe in part, stakeholders are usually interested in

data where only the influence of the river or the sea is seen. Thus, several studies have

focused on the estimation of the probability of potential CF, and only a few studies have

explicitly quantified the CF impact19,80,182,208,209. Improving the CF monitoring system

and creating an archive containing data for locations where CF events have been recorded

would contribute to obtaining a more in-depth knowledge of CF. Hydrodynamic model

experiments at the local scale are another relevant mean for improving the understanding

of CF, for example to quantify the contribution of waves to the total CF.

Furthermore, an extension of this European study of the CF hazard at the global scale

is hoped to inform coastal adaptation planners. Based on ERA-Interim reanalysis data,

preliminary results show that for the past (1979-2014), the highest probability of co-

occurring storm surges and extreme precipitation is along the northern Atlantic coast,

in Madagascar, India, central Chile, along the US and western Pacific coasts, and in the

Hurricane region (not shown). However, in regions where tropical cyclones (TCs) are

frequent, employing non-downscaled CMIP5 model data (as in this study) to analyse,

e.g., future changes in CF, might be challenging41. In fact, while TCs should be the

main CF driver in regions where TCs are frequent20,198, CMIP5 models have limitations

in representing TCs23. Also, further large-scale CF assessments should consider river

discharges74,119, and a relatively large model ensemble to estimate the natural variability

of the CF hazard.

The contribution of potential evapotranspiration (PET) and precipitation to

soil moisture drought in Europe. An explicit representation of soil moisture via

physically based land surface models is difficult116, therefore drought indices incorporat-

ing precipitation and PET are often employed as proxies of soil moisture35,187, to analyse

both present and future climate. Can these indices provide an adequate representation

of soil moisture drought?58 This study contributed to addressing this question via as-

sessing how the variables employed in common drought indices, namely precipitation

and PET, contribute to soil moisture.

As in previous studies, we found that precipitation holds the main control over soil

moisture drought. Positive anomalies of PET (integrated over a short-term period to

represent heat waves) partially drive the drought severity only in wet climates188. In

dry climates, PET is less relevant for soil moisture drought, probably because of the

limited moisture in the soil for actual evapotranspiration (ET) to occur89. At wet

sites, PET integrated over short-term period can describe the onset of drought events

as it can capture initial drying that occurs on a daily basis, while the persistence of

drought conditions is better captured by longer-term integrated PET which takes into
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account the effect of intense drying, that may have occurred during a drought event, on

soil moisture. This differences found between short and long integrations of PET may

become relevant in the analysis of changes in the onset of drought events using drought

indices. A warmer climate may cause droughts to set in quicker108,175, but such drying

may be hidden through the use of longer integration periods of PET in, e.g., an index

such as the Standardised Precipitation Evapotranspiration Index (SPEI).

Indices that incorporate both precipitation and PET, such as the SPEI and the Palmer

Drought Severity Index (PDSI), are expected to provide better information of future

drought changes than indices that use precipitation alone such as the Standardised

Precipitation Index (SPI). However, we showed that soil moisture drought is not a

simple phenomenon to characterise due to differing contributions and relevant integra-

tion periods of PET and precipitation. Thus, the use of a climatic water balance (i.e.,

precipitation-PET ) in the SPEI and PDSI assumes over-simplified relationships between

precipitation, PET and soil moisture142.

With all due caution, information of soil moisture and other drought impacts may be

deduced from drought indices. Our study shows that the relevance of PET for soil

moisture is not straightforward and depends on the local climate. Therefore, indices

incorporating PET to characterise soil moisture should be interpreted very carefully

within the context of the climate in which they are applied. Ubiquitously applying

indices incorporating PET can provide a general overview of the response of drought

conditions to global warming. However, severe drought as depicted by these indices will

have a different meaning in wet and dry climates. ET is limited by moisture availability

and so will diverge from PET in dry conditions leading to an overestimation of the actual

drying taking place with respect to the soil. Despite discrepancies between PET and

ET in dry conditions, an extreme PET will still be indicative of the drying potential of

the atmosphere215, which could have adverse effects on crop yields and contribute to,

e.g., wildfires that are mediated by the availability of moisture in vegetation55,132.

7.2 Outlook: future steps in the CE research

Many major natural catastrophes are caused by CEs. So far, for simplification or miss-

ing understanding of the physical processes underlining these major events, the risk of

extreme weather and climate impacts has been mostly estimated based on individual

drivers, or combining multiple drivers assuming they are independent. However, such ap-

proaches may cause severe underestimation of the risk, leading to serious mal-adaptation

with severe consequences for society. First of all, to provide better risk assessments, it

should be recognised both in the climate science and stakeholder communities that many
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of the major impacts are caused by CEs215, and thus that addressing extreme impacts

as CEs would be very important for society.

A CE oriented climate research is especially relevant in the current climate change

context, which might expose the deficit of some of the used impact-models in providing

future risk estimates. Many of the existing impact models, e.g. crop yield213 or heat-

stress43 models, might fail under future climate change conditions. In fact, many impact

models are too simple, e.g., as discussed for drought indices in Manning et al. 93 . Some

models are based on purely empirical relationships between the occurring impacts and

the detected drivers, i.e. they are built to work in the past and present climate, but they

might fail in the future because climate change might alter the relationships observed

in the past98. An impact model driven by a single variable would fail in the future

if the multivariate compound nature of the impact will ”emerge” due to changes in

the multivariate distribution of the actual drivers. For example, a city situated along

a river mouth may be exposed only to river flooding in the present, but could see

emerging storm surge, and potentially CF, risk in the future due to SLR. Thus, an

impact-model accounting only for river flooding would fail in the future. Similarly,

temperature and humidity represent well the human heat-stress in the present. But,

locally, future global warming might lead to anomalous hot days occurring under windy

and/or cloudy conditions that would mitigate the impact of temperature and humidity.

Thus, for future projections, it might be relevant to consider also wind and solar radiation

in heat-stress models. When necessary, impact models should be (re-)built based on

a deep physical understanding of the process leading to the impact, and on expert

knowledge of climate change. Such a deep understanding of the physics behind CE

impacts represents a crucial step towards more reliable projections of CE risk under

climate change.

Focussing on observed extreme events which caused very large impacts is a way forward

to gain physical understanding of CEs. Identifying these observed extreme events in-

evitably requires a collaboration between climate and stakeholder communities. Then,

understanding CE requires to identify the processes and variables contributing to the

final extreme compound hazard (a bottom-up approach 215), i.e. (1) the local variables

driving the impact, which ultimately will feed back into the impact-model development,

and (2) the large-scale variables or atmospheric circulations driving the local weather.

Identifying the processes leading to CEs provides relevant information for (impact and

climate) model validation and improvement, as it indicates which are the processes that

require particular attention.

A systematic CE oriented validation of climate models is necessary. While limitations of

climate models in representing single variables have been widely investigated, studies are
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only starting to focus on the projections of multiple variables and events30,43. Therefore,

it is not clear how well climate models capture the multivariate nature of many CEs,

including the physical mechanisms driving them and their changes30; existing modelling

products used to assess the risk associated with these CEs may therefore lead to seri-

ous mal-adaptation. A CE oriented validation of climate models requires to adopt CE

impact-related metrics, which need to be built or identified among the existing, possibly

through a collaboration between environmental scientists and statisticians. In this direc-

tion, it should be better investigated how well, and where, General Circulation Models

(GCMs) and Regional Climate Models (RCMs) simulate the dependencies between CE

drivers. For example, according to preliminary results of this thesis, it appears that

higher-resolution models represent higher dependencies between storm surge and pre-

cipitation variables. Thus, for CF and other CEs, it would be relevant to understand

the required resolution for a proper representation of such dependencies.

In parallel with the evaluation of statistical characteristics such as the dependencies be-

tween local CE drivers, a process-based model evaluation should be carried out focussing

both on the local- and large-scale CE drivers. Evaluating how climate models represent

the large-scale processes driving CEs is crucial, for example, for understanding whether

typical downscaling and bias corrections methods can provide impact modellers with a

good representation of the local CE drivers. For instance, data from models which can-

not represent the temporal persistence of atmospheric blocking systems, which should

be the main driver of the duration of hot and dry conditions, should not be used by

impact modellers interested in the duration of these compound extremes. Small-scale

processes, which are usually parametrized by climate models, might also strongly affect

the CE impact and should be validated. For example, it could be relevant to define

whether convection permitting models are required for a proper representation of the

covariability between temperature and humidity, which is a driver of heat stress43 and

mortality110. Ultimately, model validation will feed back both into the improvement

of GCMs and RCMs in representing CEs, and into the model selection which can be a

relevant step to obtain robust future projections of the CE impact.

Storyline approaches106,154, aiming at ”telling”60 how high-impact weather events would

look like in the future, are a further way to push the CE research forward. Although

a CE oriented model validation of GCMs has started only recently30, we already know

that there are large uncertainties in the future evolution of atmospheric circulations,

both because of natural variability and model errors153. Therefore, in many cases, at-

tempting to quantitatively describe changes in frequency and magnitude of a certain CE

type would lead to very large uncertainty, and thus the storyline approach has been in-

troduced60,154,176. The storyline approach aims at investigating how, e.g., a single event

observed in the past would look like in a warmer climate. Thus, rather than simulating

84



7.2 Outlook: future steps in the compound event research

long-time series of future climate, such an approach requires to simulating only one or

a few events; therefore, the approach allows for increasing the model resolution which

in turn likely leads to a better representation and understanding of the event itself60.

This approach is particularly appropriate for CEs as it would push forward the relatively

little physical understanding that we have of some CEs and of their changes.

For example, it could be useful to employ a storyline approach to understand how the

CF inundation would be affected by a warmer climate. So far, it has been shown that

a warmer sea can cause a relevant increase both in extreme precipitation106,183,192, and

in storm surges driven by tropical cyclones167. But the sensitivity of CF to a warmer

climate has not been studied yet. Such a sensitivity study would require to combine

high-resolution climate and inundation models (e.g., Kumbier et al. 80). Furthermore,

Zappa and Shepherd 205 adopted the storyline approach in an innovative way to tell how

the future regional climate (in terms of seasonal precipitation and wind extremes) will

change depending on plausible future changes of the atmospheric circulations. Such an

approach might be employed to investigate changes in (i) the co-occurrence of extremes

(e.g., precipitation and wind extremes99), including a comparison of the analyses for the

individual hazards, and in (ii) cyclone tracks.

As the relevance of CEs has been highlighted only recently, many types of CEs need to

be investigated yet. Many devastating CEs are characterised by rapid succession or long-

duration of extreme conditions, therefore focussing the research also in their direction

would be relevant. For example, flooding can be caused by a series of consecutive intense

precipitation events, such as the devastating Pakistan flood in 2010, which resulted from

a clustering of extreme precipitation events in July and August100. A number of studies

have analyzed the clustering of cyclones40,90,126,191, however, the occurrence of a cyclone

does not always coincide with extreme precipitation, and vice-versa124. As the clustering

of extreme precipitation has been studied only for the past over limited regions12,190,

further studies are necessary to close several research gaps.

Also, an event of persistent precipitation lasting for days over the same region can

cause record floods, as occurred in the Balkan region in 2014 due to the stationarity of

the cyclone Yvette159, and similarly in 2017 when Hurricane Harvey79 and the storm

Kai-tak113 hit Texas and Philippines, respectively. Kossin 79 has recently observed that

slow-moving tropical cyclones have increased in number in the last decades. Such be-

haviour might have been partially driven by high amplitude quasi-stationary Rossby

waves caused by hemispheric circumglobal wave resonance91,92,159. Recent years have

seen a clustering of resonance events in the northern hemisphere31, and there is some

evidence in the literature that hemispheric wave resonance may be influenced by an-

thropogenic climate change92. Thus, it would be important to understand how the
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frequency of stationary cyclones (considering also long-lasting precipitation events) will

change in the future because of human influence and natural variability. This might be

challenging, mostly because the large-scale circulations that influence stationary cyclone

occurrences might be very uncertain153. However, a storyline approach similar to that

developed by Zappa and Shepherd 205 might be adopted to better understand the drivers

of stationary cyclone occurrences (and of changes in their occurrences).

As the last example of a CE deserving attention, I mention the combination of persistent

concurrent drought and heatwave conditions that can increase the likelihood of wildfires,

negatively affect the global economy, and threaten vegetation health, e.g., prompting tree

mortality46,103,150,158,207,213. While co-occurring drought and heatwave conditions have

been analysed (e.g., refs.103,150,213), there is lack of research about the persistence of this

CE, which can strongly exacerbate the risk. Thus, in Manning et al. 94 , we are studying

this hazard over Europe, based on the methodology developed in Bevacqua et al. 20 .

The category of CEs embraces a large number of extreme events in the climate system.

As the climate system is composed of several components which continuously interact

in space and time, it is natural that an accurate assessment of many extreme impacts

requires a CE oriented approach. In particular, it could be acknowledged that the

beginning of a CE oriented research might have no precise origin in the past, as we are

embedded in a complex climate system that, already in the past, inspired us to approach

some problems through multivariate reasoning. But while the available computational

power increases and/or we get a better understanding of the climate system, explicitly

addressing many impacts as CEs becomes unavoidable. Thus, the recent introduction of

the CE concept in the scientific community could be seen as a mean for highlighting that

a CE oriented research is very relevant to advance the research on extreme events. Also,

a CE oriented research might be seen as a useful problem-solving approach for looking at

extreme events from a novel perspective, which can lead to new and insightful scientific

findings. Overall, a CE oriented research will allow for improving risk estimates of

extreme events with invaluable benefits for society. I hope this thesis has contributed to

advancing the research on CEs and to highlighting that there are many research gaps

to be closed. While climate research advances, the best modelling approach to improve

future risk estimates is to reduce greenhouse gas emissions.
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A. Appendix

A.1 Homogenisation of river level data

The zero reference level of river measurements is the water level in the river defined as

zero in the measurements. In general, such a zero reference level may change during

different periods of observation, due to technical reasons. As the zero reference level of

rivers Y2River and Y3River varied in the first three years but remained constant in the second

three, we homogenised the former with respect to the latter at both rivers. We performed

such homogenisation assuming that the precipitation falling into the catchment during

one year is responsible for the average river level in the same year. For each river YiRiver ,

we fitted the linear model Y annual
iRiver

= aiP
annual
i + bi in the last three years (those having

constant zero reference level), where Y annual
iRiver

is the annual average of YiRiver and P annual
i

is the annual cumulated precipitation over the river basin (data from ECMWF ERA-

Interim reanalysis dataset). Finally, for each river, we translated the zero reference level

of the first three years, such that the linear model was valid in these years as well.

A.2 CDVineCopulaConditional: an R-package for sampling

from conditional C- and D-vine copulas

The R-package CDVineCopulaConditional 18 provides tools for sampling from a condi-

tional copula density decomposed via Pair-Copula Constructions as C- or D- vines. A

list of these tools, including a comprehensive description for their use, can be found in

the online documentation of the package in the CRAN repository18.

The package is based on two main new algorithms. These algorithms allow for con-

ditional sampling from a C- or a D-vine from which the conditioning variables would

be sampled as first when following the sampling algorithms from Aas et al. 1 . Specif-

ically, given a C- or a D-vine of the variables (X1, ..., XNcond
, XNcond+1, ..., Xn), Algo-

rithms 1 and 2 allow for the conditional sampling of (XNcond+1, ..., Xn) given (X1 =
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xcond1 , ...., XNcond
= xcondNcond

), where Ncond is the number of conditioning variables. When

the conditioning variables are not given (Ncond = 0), Algorithms 1 and 2 reduce to the

special cases of Algorithms 1 and 2 shown in Aas et al. 1 . CDVineCopulaConditional in-

cludes tools for selecting the best pair-copula families and the best vine structure (based

on information criteria) among those which allow for such conditional sampling.

The employed approach for the conditional simulation is not the only possible14, but

despite the fact that the best vine is selected among a fraction of all the possible, it can

provide very satisfactory results, as we show in this study. Also, we refer to refs.22,86 as

other works where conditional joint pdfs decomposed as C-vines were used for statistical

modelling.

Algorithm 1 Algorithm to simulate uniform variables ~X =
(X1, ..., XNcond

, XNcond+1, ..., Xn) from a C-vine. Generates one sample xNcond+1, ..., xn
conditioned on given values xcond1 , ...., xcondNcond

. The h-function is defined as in Aas et al. 1 .
Θj,i is the set of parameters of the copula density cj,j+1|1,...,j−1.

Sample wNcond+1, ..., wn independent uniform on [0,1].
if Ncond 6= 0 then

for i in (1, ..., Ncond) do
wi = xcondi

end for
end if
x1 = v1,1 = w1

for i in (2, ..., n) do
vi,1 = wi
if i > Ncond then

for k in (i− 1, i− 2, ..., 1) do
vi,1 = h−1(vi,1, vk,k,Θk,i−k)

end for
end if
xi = vi,1
if i == n then

Stop
end if
for j in (1, ..., i− 1) do
vi,j+1 = h(vi,j , vj,j ,Θj,i−j)

end for
end for

A.3 Vines and sampling procedure

In this appendix, more details about vines are given, focusing on C- and D-vines.
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Algorithm 2 Algorithm to simulate uniform variables ~X =
(X1, ..., XNcond

, XNcond+1, ..., Xn) from a D-vine. Generates one sample xNcond+1, ..., xn
conditioned on given values xcond1 , ...., xcondNcond

. The h-function is defined as in Aas et al. 1 .
Θj,i is the set of parameters of the copula density ci,i+j|i+1,...,i+j−1.

Sample wNcond+1, ..., wn independent uniform on [0,1].
if Ncond 6= 0 then

for i in (1, ..., Ncond) do
wi = xcondi

end for
end if
x1 = v1,1 = w1

if Ncond < 2 then
x2 = v2,1 = h−1(w2, v1,1,Θ1,1)

else
x2 = v2,1 = w2

end if
v2,2 = h(v1,1, v2,1,Θ1,1)
for i in (3, ..., n) do
vi,1 = wi
if i > Ncond then

for k in (i− 1, i− 2, ..., 2) do
vi,1 = h−1(vi,1, vi−1,2k−2,Θk,i−k)

end for
vi,1 = h−1(vi,1, vi−1,1,Θ1,i−1)

end if
xi = vi,1
if i == n then

Stop
end if
vi,2 = h(vi−1,1, vi,1,Θ1,i−1)
vi,3 = h(vi,1, vi−1,1,Θ1,i−1)
if i > 3 then

for j in (2, ..., i− 2) do
vi,2j = h(vi−1,2j−2, vi,2j−1,Θj,i−j)
vi,2j+1 = h(vi,2j−1, vi−1,2j−2,Θj,i−j)

end for
end if
vi,2i−2 = h(vi−1,2i−4, vi,2i−3,Θi−1,1)

end for
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A.3.1 Vines

Shown below are the general expressions to decompose an n-dimensional pdf via PCCs

as C-vines (eq. (A.2)) or D-vines (eq. (A.1))1:

fY1,...,Yn(y1, .., yn) =
n∏
k=1

f(yk)
n−1∏
j=1

·

·
n−j∏
i=1

ci,i+j|i+1,...,i+j−1{F (yi|yi+1, ..., yi+j−1), F (yi+j |yi+1, ..., yi+j−1)}

(A.1)

fY1,...,Yn(y1, .., yn) =

n∏
k=1

f(yk)

n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1{F (yj |y1, ..., yj−1), F (yj+i|y1, ..., yj−1)}.

(A.2)

The 5-dimensional vine that we use for the conditional model is shown in eq. (3.6),

where (Y1, Y2, Y3) are the variables (Y1Sea , Y2River , Y3River), and (Y4, Y5) are the predictors

(X1Sea , X23Rivers). The graphical representation of that decomposition is shown in Fig.

A.1A, where the concept of tree is introduced.

A.3.1.1 3-Dimensional vine

In total, a 3-dimensional copula density can be decomposed in three different ways,

and each of these vines is both a D-vine and a C-vine. For this application we use the

following vine.

f123(y1, y2, y3) = f1(y1) · f2(y2) · f3(y3)

· c12(u1, u2) · c23(u2, u3)

· c13|2(u1|2, u3|2).

(A.3)

This decomposition is represented graphically in Fig. A.1B. We underline that, in eq.

(A.3), the rigorous expression of the conditional copula density c13|2, of the pair (U1,U3)

given U2 = u2, would be c13|2(u1|2, u3|2;u2). In eq. (A.3), c13|2 is written under the

assumption of a simplified PCC, i.e. the parameters of c13|2 are the same for all values

of u2 ∈ (0, 1). The simplified PCC may be a rather good approximation, even when

the simplifying assumption is far from being fulfilled by the actual model68,163. Cop-

ula parameters that are functions of the conditioning variables, and thus violate the
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Figure A.1: Graphical representation of D-vines. (A): representation of the
5-dimensional D-vine in eq. (3.6). There are 4 trees (T1, T2, T3, T4), and 10 edges.
Each edge represents a pair-copula density, and the label indicates the subscript of
the corresponding copula. For example, the edge 43|5 represents the copula density
c43|5. The decomposition of the joint pdf related to the represented vine is obtained by
multiplying all the represented pair-copula densities (10 in this case) and the marginal
pdfs of each variable. For more details see Aas et al. 1 . (B): representation of the
3-dimensional vine in eq. (A.3). There are 2 trees (T1 and T2), and 3 edges.

simplifying assumption, are approximated by the average over all values of the condi-

tioning variables. The effect of this approximation on the estimated impact is likely to

be small68,163 (a discussion on the effect of the approximation is available in the online

documentation of the review process of Bevacqua et al. 19).

In this study of compound floods (CFs), the variables (Y1, Y2, Y3) of eq. (A.3) are the

(ε1Sea , ε2River , ε3River) introduced in appendix A.6. Specifically, the vine of eq. (A.3)

represents that used at the first step of the procedure in appendix A.5. The vine that

we use at the third step of the procedure in appendix A.5 is:

f123(y1, y2, y3) = f3(y3) · f1(y1) · f2(y2)

· c31(u3, u1) · c12(u1, u2)

· c32|1(u3|1, u2|1)

(A.4)

where (Y1, Y2, Y3) = (Y1Sea , Y2River , Y3River).

A.4 Statistical inference of the joint pdf

Statistical inference on a pdf decomposed via a PCC is in principle very computationally

demanding. As can be seen from eq. (A.3), the arguments of the copulas are influenced
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from the choice of the marginals (because of ui = Fi(xi)), and the argument of the copula

in each level, is influenced from the fit of the copulas in the previous levels too. Thus,

the estimation of the parameters of the full pdf (marginals and pair-copulas) should be

performed together. Moreover the structure of the vine has to be chosen, increasing the

demands of computational resources.

To overcome these obstacles, some techniques have been developed. The complications

regarding the dependence of the copula parameters from the marginals estimation can

be overcome using empirical marginals50. This allows for the estimation of copula pa-

rameters without the need of considering the marginals. However, to take into account

that the estimation of the parameters of each pair copula depends on those of the upper

levels, the estimation of the parameters of all the pairs should be performed at the same

time. This way of estimating the parameters is called semiparametric (SP). The esti-

mator we use here is the stepwise semiparametric (SSP). It was proposed by Aas et al. 1

and then Hobæk Haff et al. 69 , and despite being asymptotically less efficient than the

SP69, it produces very satisfactory results and speeds up the procedure considerably67.

As in SP, the PCC parameters are estimated independently of the marginals, but the

estimation of the PCC parameters is performed level by level, plugging in the parameters

from previous levels at each step67.

Here, for each marginal pdf we use a mixture distribution composed of the empirical and

the Generalized Pareto Distribution (GPD) for the extreme. For each predictor X, the

GPD is fitted to data above a threshold defined here as their respective 95-percentile.

For each of the contributing variables Y , this threshold was chosen requiring that the

mean of the simulated extreme values from the joint pdf, was as near as possible to

the maximum observed value of the variable Y we were fitting. Adding the GPD to the

empirical marginal for the extremes is necessary so to not constrain the model to simulate

values of the variables Y with maximum values that never exceed those observed during

the calibration period.

We use the AIC to select the best vine structure among C- and D-vines (those selected

are shown in sections A.3.1.1 and 3.2.3). In particular, for every possible C- and D-vine,

we fit all possible families through the maximum likelihood estimation, and then we

select the best family according to the AIC. Then, we select the best vine according to

the AIC for the full model. The pair-copula families are chosen among those available

in the R package VineCopula 140. In particular, for the unconditional model all of the

available families are considered during the selection, while for the conditional model

we restricted the choice to the first 31 families listed in the documentation file of the

package. This is because of technical issues regarding the simulation of data from the

conditional pdf of the conditional model. Once the vine is selected, to better assess the
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Figure A.2: K-plots of the pair-copula families selected for the 5-dimensional
model. The name of the families and parameters are shown on the top-left of each
plot. In abscissa the empirical K-function and in ordinate the K-function based on
fitted copula. The 95% confidence interval (shown in light red) is obtained from 104

K-plots computed on simulated pairs (with same length as the observed data) from the
selected pair-copula families.

quality of the fit of each pair-copula, we employ both the Cramer-von Mises test (results

are not shown here) and the K-plot (Fig. A.2). This is a plot of the Kendall-function

K(w) = P (Ci,j(Ui, U, j) ≤ w) computed with the fitted copula, against K(w) computed

with the empirical copula obtained from the observed uniform data. This diagnostic plot

indicates a good quality of the fit when the points follow the diagonal49,70. We note that

the K(w) of the fitted copula is computed using Monte Carlo methods (long simulations

allow for neglecting the associated sampling error). In Fig. A.2 we show the resulting

K-plots and the selected copulas with their respective parameters for the 5-dimensional

PCC (K-plots for the 3-dimensional are not shown). The families chosen for copulas

c43|5(u4|5, u3|5) and c42|135(u4|513, u2|513) according to the AIC were describing slightly

negative dependencies (< 0.1), but for physical reasons we expect these copulas to

describe slightly positive dependencies. We argue that this result is due to uncertainties

of the model. Therefore we choose independent copulas for these pairs, which is a

compromise between the expert knowledge we have about the data and the result of the

fit. When assuming independent copulas for these two pairs, the corresponding K-plots

show only a small deviation from the diagonal (right side of Fig. A.2). Moreover these

K-plots are mostly inside the 95% confidence interval of the K-plots, which confirms the

reasonability of choosing these two independent copulas.

The R packages CDVineCopulaConditional 18 and VineCopula 140 were used to work

with copulas. The GPDs for the marginal distributions were fitted through the function

gpd.fit of the R package ismev 61.
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A.4.1 Selected pair-copula families

In the case of the unconditional model, the fitted pair-copula families to the observed

contributing variables Y - relative to the vine of eq. (A.4) - are: Survival BB1 (param-

eters: 0.49, 1.15) for c31(u3, u1), BB8 (parameters: 4.01, 0.6) for c12(u1, u2), Tawn type

1 (parameters: 2.59, 0.73) for c32|1(u3|1, u2|1). The selected families relative to the vine

of eq. (A.3), i.e. the one fitted to (ε1Sea , ε2River , ε3River) introduced in appendix A.6, are:

t-copula (parameters: 0.15, 3.44) for c12(u1, u2), Tawn type 2 (parameters: 2.85, 0.71 )

for c23(u2, u3), Survival Gumbel (parameter: 1.13) for c13|2(u1|2, u3|2). In the case of the

conditional model, the selected pair-copula families with relative parameters, fitted to

the observed data of contributing variables Y and predictors X, are shown in Fig. A.2.

A.5 Model and return periods uncertainty estimation via

parametric bootstrap

The flexibility of copula theory to model multivariate distributions has determined its

spread in literature, and more recently in climate science. However, we stress that the

uncertainties associated with the fitted model (both in the parameter estimates and the

choice of the model) should be considered. This is particularly important, as it often

happens that because of the limited sample size of the available data, these uncertainties

are large and so cannot be neglected148. Practically they have a direct influence on the

uncertainties of hazard probability and risk analyses. In particular, we observed that the

uncertainties are also controlled by the dependence values between the modelled pairs

(not shown).

In this study, we find uncertainties in the joint pdf (model uncertainties) which prop-

agate into large uncertainties when assessing the compound flood (CF) return periods.

This does not mean that such models are not useful, but instead that the results should

be interpreted being aware of these existing uncertainties. Also, even if large, the ob-

tained uncertainties in the CF return periods are smaller than those obtained computing

the return periods directly from the observed data of the impact, underlining another

advantage of applying such procedures.

Both for the unconditional and conditional model, we use a parametric bootstrap to

assess the model and subsequent CF return period uncertainty, as follows:

1. Select and fit a model that can reproduce the statistical characteristics of ~Y obs

((~Y obs, ~Xobs) for the conditional model): dependence among the variables and
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their marginal distributions. For the unconditional model we include also the

serial correlation as described in appendix A.6.

2. Simulate B = 2.5·103 samples of the contributing variables Y (as well as predictors

X for the conditional model) with the same length as the observed data.

3. On each of the B = 2.5 · 103 samples, fit a joint pdf via PCCs (the structure of

the PCC is the same as that fitted on the observed data, while the pair-copulas

families are re-selected for each sample).

4. From each of these B = 2.5 · 103 models, simulate a sample of contributing vari-

ables Y of length equal to 200 times the observed (for the conditional model the

contributing variables Y are simulated as conditioned on the predictors X).

5. For each sample, compute the simulated impact sequence as

hsim = h(Y sim
1Sea

, Y sim
2River

, Y sim
3River

) and estimate the corresponding return level curves.

Return levels are estimated through fitting the Generalized Extreme Value (GEV)

distribution on annual maximum values. We simulated samples of length 200

times the length of the observed data (6 years), to get - for each sample - 1200

annual maximum values on which we fit the GEV distribution. This allows us to

neglect the uncertainty of the return levels driven by the sampling because the

uncertainties of the GEV distribution parameters are negligible.

6. Estimate the uncertainties on the return levels through identifying the 95% con-

fidence interval (i.e. the range 2.5 − 97.5%) of the B = 2.5 · 103 return level

curves.

As underlined in step 1, for the unconditional model, we explicitly model the serial

correlations of the contributing variables Y when computing the uncertainties. This was

done to avoid an underestimation of the CF return period uncertainties (see appendix

A.6). For the conditional model, step 3 is a rigorous bootstrap procedure, while for the

unconditional model this step is an approximation. In fact, for the unconditional model,

at step 3 we should have fitted the same type of model as fitted in step 1, i.e. that

could include the serial correlations. Unfortunately, such a procedure was not feasible

because of computational limitations, and we had to proceed by approximation, i.e.

fitting a pdf via a PCC without considering the autoregressive processes. In particular,

the computational limitations were due to the tuning procedure explained in appendix

A.6. Therefore we used the best method possible to avoid underestimation of the CF

return period uncertainties, but we underline that we used such an approximation.

The uncertainty of the return levels obtained via the observed data hobs are computed

through propagating the parameter uncertainties of the GEV distribution fitted to the
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annual maxima of hobs (Fig. 4.6). In particular, the fitted GEV distribution is a function

of the parameters µ (location), σ (scale) and η (shape)29. The GEV based return level

RLt associated with the return period t is a function of the three parameters (µ, σ, η)29.

We obtained the standard deviations of the three parameters (µ, σ, η), respectively sµ,

sσ, sη, via the gev.fit function of the R package ismev 61. To estimate the standard

deviation of the return level RLt, we propagated the standard deviations of the three

parameters (µ, σ, η) using the formula:

sRLt =

√(
∂RLt
∂µ

)2

· s2µ +

(
∂RLt
∂σ

)2

· s2σ +

(
∂RLt
∂η

)2

· s2η (A.5)

where sRL is the standard deviation of the return level RL. The final 95% interval of

uncertainty of the return level RT t is obtained as RT t ± 2sRLt .

A.6 Incorporation of the AR(1) in the unconditional model

Given a statistical model describing time series with serial correlations, to avoid an

underestimation of the model uncertainties computed via bootstrap procedure, it is nec-

essary to use a model which can reproduce the serial correlation. During the bootstrap

procedure, simulating samples without serial correlation, and then re-fitting the model

to each of them, would mean to assume that the data carry more information than they

actually do. In fact, it is like the effective sample size of data with serial correlation

is smaller than those without148. Here we introduce the procedure we used to build a

multivariate statistical model that can represent the serial correlation and the marginal

pdf of the variables, and the statistical dependencies between them. The steps taken

follow below.

1. Fit a linear Gaussian autoregressive model of order 1, AR(1):

Yi(t) = c + ϕYi(t− 1) + εi(t) (A.6)

on the ith marginal time series (i = 1, 2, 3), i.e. (Y1Sea , Y2River , Y3River). The chosen

AR(1) requires that the modelled variable is Gaussian distributed so, before the fit,

we transformed the river variables via the loge function, which guarantees a more

similar behaviour to the Gaussian. The observed sea variable was not transformed

because it had already a behaviour similar to Gaussian.

2. Assured via the autcorrelation function (ACF) that εi(t) has no longer a significant

serial correlation, fit the joint pdf via PCCs on the residual variables (ε1, ε2, ε3).
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We observe that the dependencies of these modelled pairs via PCCs, are not usual

physical dependencies between the contributing variables (i.e. sea and river levels),

but between their residuals with respect to the AR(1) models.

3. Simulate the residuals (εsim1 , εsim2 , εsim3 ) and plug into the ith autoregressive model.

Finally, to get the simulated contributing variables Y , the river variables were

transformed via the exp function.

We observe here that when selecting the fitted pair-copulas and parameters for the

residuals via the AIC, the simulated contributing variables Y had a smaller dependence

with respect to the observed. We therefore proceeded through a tuning procedure, i.e.

we built a routine to automatically tune the parameters of the fitted families, requiring

that the Kendall rank correlation coefficient among the variables Y were well simulated.

In Fig. A.3, the autocorrelation functions of the Y obs variables are compared with those

of Y sim simulated from the fitted model. Because of the gaps in the Y obs time series,

not all the observations are usable to compute the ACF (in particular the percentage

of usable data decreases when increasing the Lag at which the ACF is computed). We

therefore computed the ACF up to a Lag of about 25 days, which guarantees to use

at least the 35% of data from the observed time series. Up to a Lag of about 15 days,

except for a very few cases with the variable Y3River , the ACFs of the observed data are

always inside the 95% interval of the ACFs obtained from the fitted model.

We consider this result as satisfactory because our target is to include the serial cor-

relation of the contributing variables Y into the model, and we can see that even for

the variable Y3River , the values of the ACFs have a significant serial correlation. Also,

considering that the ACF is only slightly misrepresented for just one of the three time

series, we argue that this is likely to have only a small effect on the final assessment of

the model uncertainties.

A.7 Brier score for extreme values

We employ the Brier score to assess the accuracy of the probabilistic predictions of

the conditional model when predicting extreme values of the impact h. For compound

flooding, we defined an extreme of h as a value larger than the 95-percentile of hobs.

The Brier score is:

BS =
1

N

N∑
t=1

(pt − ot)2 (A.7)

where pt is the probability of getting an extreme value h from the model at time t,

while ot is 1 if hobs(t) is extreme and 0 otherwise. We get the value of pt through a
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Figure A.3: Validation of the unconditional model based on the autcorrelation
function (ACF). ACF of the observed time series (shown in red) against the ACF 95%
confidence interval (grey) of the model (obtained through the Monte Carlo procedure).
The dashed lines contain the 95% confidence interval defined by the ACF of a white
noise process, i.e. outside this interval the ACF of the contributing variables Y is
significant.

Monte Carlo procedure. The Brier skill score (BSS) measures the relative accuracy of

the model under validation over a reference model, and is defined as:

BSS = 1− BS

BSref
(A.8)

where BSref is the Brier score of the reference model. Here we consider the climatology

of h as the reference model, i.e. an empirical model such that pt = 0.05 ∀ t. A significant

positive value of BSS indicates that when predicting extreme values, the model under

validation is more accurate - according to the BS - than the reference model.

For soil moisture drought, the same procedure is applied, but the extremes are defined as

values below the 15-percentile of hobs. Also here the climatology of h is used as reference

model, i.e. we use an empirical model where pt = 0.15 ∀ t.

A.8 Cross-validation procedure

To assess the quality of the conditional model, avoiding overfitting, we perform a 6-fold

cross-validation. Therefore, the original sample of data ( ~X, ~Y ) is randomly partitioned

into 6 equally sized subsamples. Of the 6 subsamples, 5 subsamples (the training data)

are used in fitting the model that is then validated against the remaining subsample. For

each training subsample we fit (1) new predictors X for the contributing variables Y ,

(2) a new joint pdf f~Y | ~X(~Y | ~X) and (3) a new h-function. For each validation subsample,

we simulated 104 realizations of the ~Y values through conditioning on the concurring

predictors. Finally, by combining the simulations of each validation subsample, 104 cross-

validation time series of the contributing variables Y and the impact h are obtained.
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B.1 Relative sea level rise influence on extreme sea level

Most of the places experience an important increase of extreme sea level (larger than

1-year return level) days due to relative sea level rise (RSLR). Relative sea level rise

is defined as the superposition of sea level rise (SLR) with land uplift/subsidence pro-

jections121. Here, we use SLR projections based on three land-ice scenarios of water

contributions from ice sheets and glaciers64. Fig. B.1 shows the probability of a day ex-

periencing extreme sea level as it would occur when adding relative sea level rise (RSLR)

projections to the historical sea level time series (i.e., the superposition of astronomi-

cal tides and surges, including waves). For example, according to the medium land-ice

scenario, along the Mediterranean Sea the probability of a day with extreme sea level is

40-100% (it is higher than 60% for the 90% of locations) (Fig. B.1b). This probability

is lower along the Atlantic coast, however it is still very large when compared with that

expected when not taking RSLR into account, i.e. 0.3% (Fig. B.1b). The northern part

of the Baltic Sea is the only region where - due to uplift121 - a reduction of the proba-

bility of extreme sea level occurrence is projected (Fig. B.1). SLR data from Hinkel et

al. (2014)64 combine SLR from four CMIP5 models (HadGEM2-ES, IPSL-CM5A-LR,

MIROC-ESM-CHEM, and NorESM1-M CMIP5) with three land-ice scenarios of water

contributions from ice sheets and glaciers195.

B.2 Bivariate validation

The individual surge, wave and astronomical tide models have been evaluated in

refs.112,161,195,197. The performance of ERA-Interim to represent precipitation extremes

has been evaluated by Hertig et al. 62 . Here we evaluate the covariability of surge lev-

els and precipitation. We find an overall good agreement between ERA-Interim and

observation based compound flood probability (Fig. B.2 and B.3). Although the com-

parison of the model with observations for the single stations shows some biases, the
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Figure B.1: Percentage of days experiencing extreme sea level due relative sea
level rise (RSLR). Multi-model mean of probability of a day experiencing extreme
sea level (larger than the 1-year return level) as it would occur when adding mean RSLR
projections at the end of the century (2099-12-31) to the historical sea level time series
(1970-2004). Computed for (a) low, (b) medium, and (c) high land-ice scenarios64.
Values larger than 0.3% indicate RSLR-driven increasing probability of extreme sea
level occurrence.

general geographical pattern of the covariability is captured by the model. The model

seems to slightly overestimate the highest Spearman correlations between surges and

precipitation (see Fig. B.2c); this might be due to non-linear surge-tide interactions

that are not represented by the model. However, this model shortcoming does not affect

our assessment of CF return periods (Fig. B.3f). The model reproduces the large-scale

pattern of the CF hazard, e.g. the tendency to higher CF probability along the western

rather than eastern coasts of UK and Sweden. In both data sets, the astronomical tides

reduce the meteorological-driven dependence between precipitation and storm surges

(compare panel a with d, and b with e, in Fig. B.2), and the effective CF probability

is reduced as well (Fig. B.3). The confidence we have about the bivariate probability

density function of more rare precipitation and sea level pairs decrease with the length

of the available data. Therefore, given the shortness of the station data (Fig. B.2 and

B.3), we computed return periods for potential CF defining precipitation and sea level

extremes as values larger than the individual 99th percentiles. This is slightly different

from the 1-year return levels (∼ 99.7th percentiles) used for getting the results of the

main text, but there the length of the data is ∼30 years. Here, we do not consider the

wave component of the sea level, as its short-term variability is not properly captured

by the sea level stations, unless they are located off shore195,197. Data sources used for

validation are: E-OBS (resolution 0.5°) for precipitation59; the JRC tide gauge database

for sea level; astronomical tides were filtered out from the observed data via the UTide28

Matlab package.

In Fig. B.4 we compare the CMIP5 and renalysis based CF return periods (without
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Table B.1: Information about used CMIP5 models.

Institute ID Model Name Ensemble member

CSIRO-BOM ACCESS1-0 r1i1p1
CSIRO-BOM ACCESS1-3 r1i1p1
EC-EARTH EC-EARTH r8i1p1

NOAA GFDL GFDL-ESM2M r1i1p1
NOAA GFDL GFDL-ESM2G r1i1p1

CSIRO-QCCCE CSIRO-Mk3-6-0 r1i1p1

including the astronomical tides, to focus more on the meteorological component). All

of the models show an higher probability of CF along the Mediterranean coast. In

this case, due to the natural variability, a comparison of the return period estimated

from different models at the individual grid-point is misleading. Therefore, we compare

the CF return periods of the different models aggregated over regions. As a result,

the CMIP5 based return periods are usually inside the sampling uncertainty of the

reanalysis based return periods (Fig. B.4h). However, it appears that CMIP5 models

tends to systematically slightly overestimate the return periods with respect to ERA-

Interim. Additional analyses indicate that this overestimation might be explained by

the lower resolution of the CMIP5 models (not shown). We note that using the delta

change approach for estimating the CF return periods in the future, we only employ the

climate change signal from the CMIP5 models, rather than the CF return periods in the

present climate.

B.3 Supplementary figures

B.3.1 Univariate return periods

To estimate the (univariate) return periods (Fig. B.7b, B.7c, and B.8), we fit the cumu-

lative distribution function F (employing a Generalized Pareto Distribution (GPD)) to

threshold excesses over the present 95th percentile (computed over wet days for precipi-

tation). Clusters of threshold excesses separated by less than three days were replaced

by a unique event which assumes the maximum observed value during the cluster. The

return period of extreme events (1-year return levels, i.e. the ∼ 99.7th percentile x99.7),

is T99.7 = µ/(1−F (x99.7)), where µ is the average time elapsing between the events used

for the fit of the GPD. The GPD was fitted as explained in the Methods section of the

main text.
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Figure B.2: Comparison of the dependence between sea level and precipita-
tion based on ERA-Interim and observation data. Spearman correlation ρSP

between sea level and daily precipitation, based on (a) ERA-Interim and (b) obser-
vations, where sea level time series do not include the astronomical tide component
(it was filtered out from the observations via the UTide28 Matlab package). Correla-
tions based on (d) ERA-Interim and (e) observations, where the sea level time series
include astronomical tides (here, tides obtained from the observed data were added
to the ERA-Interim sea level data). Panel (c) shows the scatterplot of ρSP based on
ERA-Interim and observations in the case without tides (accordingly, the case including
tides is shown in panel (f)). The Spearman correlation is computed over time periods
where observations intersect ERA-Interim data. The dimension of the dots indicates
the length of the time series employed for the analysis, as indicated in the bottom left
corner of panel (a).
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Figure B.3: Comparison of the return periods of potential compound flooding
(CF) based on ERA-Interim and observation data. Similar to Fig. B.2, but
for return periods T of CF (co-occurring sea level and precipitation extremes, i.e. >
99th percentile). The return periods are computed considering time periods where
observations intersect ERA-Interim data. Bordeaux triangles indicate values smaller
than the legend range.
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Figure B.4: Probability of potential compound flood (CF) based on individual
models. Return periods of CF (co-occurring sea level and precipitation extremes, i.e.
larger than the individual 1-year return levels). The return periods are based on the
period 1980-2004, i.e. the intersection of the model time domains. To focus on the
meteorological component only, astronomical tides are not considered here. (h) Median
value of CF return periods in regions defined in (g), based on individual models. For
ERA-Interim, grey shading illustrates the sampling uncertainty 95% range (computed
as explained in the Methods, but without considering tides).
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Figure B.5: Extreme values of sea level and precipitation. 1-Year return levels
of (a) precipitation accumulated within a time range ±1 days and (b) maximum daily
sea level. Based on ERA-Interim data (period 1980-2014).

Figure B.6: Changes in probability of potential compound flood (CF) driven
by the astronomical tides. Return periods of CF (co-occurring sea level and pre-
cipitation extremes, i.e. larger than the individual 1-year return levels); based on
ERA-Interim data. (a) To isolate the effect of astronomical tides on the resulting CF
return periods, here sea level does not include astronomical tides. (b) Scatterplot of
the return periods of CF in the individual locations of the analysed domain, where sea
level includes astronomical tides (x-axis, shown in Fig. 5.1), and where sea level does
not include astronomical tides (y-axis, shown in panel (a)). The colours indicates the
geographical region where the locations belong (the regions are defined in Fig. 5.2b).
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Figure B.7: Regional changing probability of potential compound flood (CF),
extreme sea level and precipitation. Regional median value of projected change
of (a) CF, extreme sea level (b) and precipitation (c) return periods between future
(2070-2099) and present (1970-2004), separately for individual models and regions (the
latter are defined in Fig. B.4g). SLR is not considered in the definition of future sea
levels (see main text). The sea return period change in region 8 is larger than the
x-axis, i.e. ∼ 180 % (for the ACCESS1-3 model). Similarly, the CF return period
change in regions 6, 8, and 10 is ∼ 620 %, 480 % (ACCESS1-3 model), and 200 %
(GFDL-ESM2M) respectively. See Fig. B.10 for maps of change in CF return periods
based on individual CMIP5 models.

Figure B.8: Changing return periods of extreme sea level (no SLR), and
precipitation. Multi-model mean of projected change (%) of return periods, between
future (2070-2099) and present (1970-2004). Return periods of (a) extreme sea level
(no SLR) and (b) extreme precipitation. Grey points indicate locations where only 4
or fewer out of 6 models agree on the sign of the return period change (3 or less out of
5 models in the Black Sea).
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Figure B.9: Probability of potential compound flood (CF) for present and
future periods, based on CMIP5 models. Multi-model mean of CF return peri-
ods (co-occurring sea level (no SLR) and precipitation extremes, i.e. larger than the
individual 1-year return levels) for (a) present (1970-2004), and (b) future (2070-2099).
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Figure B.10: Future change of compound flooding (CF) return periods based
on individual models. Projected change (%) of return periods, between future (2070-
2099) and present (1970-2004) for individual models (a-f). Minimum (g) and maximum
(h) change of the return periods based on the model ensemble.
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C. Appendix

C.1 Statistical inference of the multivariate probability

density function

Throughout the study in chapter 6, we employ a 4-dimensional D-Vine. For a 4-

dimensional D-vine, there are totally twelve possible decompositions. We employ the

vine for conditional simulations of h given (Y3,Y2,Y1), and we select the best vine among

the six which allows for conditioning sampling following the approach described in sec-

tion 3.2.3.1. In particular, for convenience we employ a unique decomposition to be

applied throughout the study at all sites; the procedure we follow for this selection is

outlined later. The used vine is given as:

f3,2,1,h(y3, y2, y1, h) = f3(y3) · f2(y2) · f1(y1) · fh(h)

· c32(u3, u2) · c21(u2, u1) · c1h(u1, uh)

· c31|2(u3|2, u1|2) · c2h|1(u2|1, uh|1)

· c3h|21(u3|21, uh|21).

(C.1)

The parameters of each bivariate copula in eq. (C.1) are estimated based on the marginal

variables ui drawn from the marginal CDFs Fi. We use a kernel density estimate for

all marginal distributions. The use of kernel density estimates provides a convenient

way of estimating the marginal distribution of h. Soil moisture has natural upper and

lower bounds, according to its wilting and saturation points respectively, and can also

exhibit a bimodal distribution36,127. All marginal densities are estimated using the ks

R package39 which employs the bandwidth selector of Wand and Jones 200 .

We follow the approach used in ref.125 to remove ties from the ui values were the copulas

are fitted to. Through this approach, a small random noise is drawn from a uniform

distribution on [-0.001,0.001] and added to Y1PS and Y2PL values greater than zero. For
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values equal to zero, we add a random noise drawn from the uniform distribution on

[0,0.001].

The selection of the D-vine decomposition in eq. (C.1) is based on an initial test in which

we assess the performance of each of the six possible decompositions in their ability to

represent h when conditioning on observed Y . At all sites we fit a PCC for each of the

six decompositions and use the AIC criterion when selecting the type of copulas to be

used. The selection of copula families and the estimation of their parameters is carried

out at each site separately. Each copula is chosen from a range of copulas provided

by the VineCopula R package140. To assess each of the six possible decompositions, a

probabilistic forecast of h consisting of 1000 members is produced at all sites. These

are compared with observed soil moisture using the root mean squared error. We then

select the decomposition that generally shows the highest explanatory power of h at all

sites.

After selecting the decomposition to apply, the goodness of fit (GoF) of the selected

copulas is tested. Here, copulas initially selected according to the AIC did not always

provide a satisfactory fit. For this reason we use two criteria in the selection of a copula

for each pair in the PCC. This procedure is carried out sequentially, unconditional

copulas are first selected followed by the conditional copulas. We firstly select the top

three copulas of the vine according to the AIC and secondly test the GoF of each copula

using K-plots19,49. We then select the highest ranked copula according to the AIC

that shows satisfactory compliance in the K-plots (K-plots are described in appendix

A.3 and19). Most selected copulas show good agreement according to the K-plots (not

shown) where parametric K(w) values generally follow the mean of the empirical values

and mostly remain within the uncertainty intervals calculated from 1000 simulations.

Some small problems are found with the copulas at sites (e) and (f) which may limit

the strength of conclusions drawn from these sites.
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